Skip to content
Snippets Groups Projects

Main

Merged Marcin Kirsz requested to merge main into develop
1 file
+ 5
15
Compare changes
  • Side-by-side
  • Inline
@@ -5,17 +5,14 @@
/** Modified Embedded Atom Descriptor
*
* REQUIRED KEYS: SCGRIDMB, CGRIDMB
* + REQUIRED KEYS BY THE EMBEDDING FUNCTION
*
*
* TODO Below description is for EAD not mEAD
* This descriptor has mathematical form very similar to EAD.
* It allow: for different embedding functions to be used.
* REQUIRED KEYS: SGRIDMB, CGRIDMB + KEYS OF THE THE EMBEDDING FUNCTION
* This descriptor has mathematical form very similar to DM_EAD.
* but allow usage of custom defined embedding function, \f$ \mathcal{F} \f$, in place of default quadratic one.
*
* \f[
* V_i^{L,\eta,r_s} = \sum_{l_x,l_y,l_z}^{l_x+l_y+l_z=L} \frac{L!}{l_x!l_y!l_z!}
* \Big( \rho_i^{\eta,r_s,l_x,l_y,l_z} \Big)^2
* \mathcal{F}\Big( \rho_i^{\eta,r_s,l_x,l_y,l_z} \Big)
* \f]
*
* where density \f$ \rho \f$ is calculated using Gaussian Type Orbitals:
@@ -31,13 +28,6 @@
*
* e.g. \f$L_{max}=2\f$ will calculate descriptors with \f$ L=0,1,2 \f$ (s,p,d orbitals).
*
* More information about this descriptor:
*
* <div class="csl-entry">Zhang, Y., Hu, C.,Jiang, B.
* (2019). Embedded atom neural network potentials: efficient and accurate
* machine learning with a physically inspired representation.
* <i>Journal of Physical Chemistry Letters</i>, <i>10</i>(17),
* 4962–4967. https://doi.org/10.1021/acs.jpclett.9b02037</div>
*
* Required Config keys:
* \ref INITMB \ref CGRIDMB \ref SGRIDMB
Loading