Newer
Older

Yair Fosado
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://lammps.sandia.gov/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Yair Augusto Gutiérrez Fosado
Davide Michieletto
------------------------------------------------------------------------- */
#include "fix_topo2.h"
//The atom class provides access to various atom properties, including the atom type, molecular ID, position, velocity, and force
#include "atom.h"
//Came by default in fix_swap_atom
#include <cmath>
#include <cctype>
#include <cfloat>
#include <cstring>
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "fix.h"
#include "comm.h"
#include "compute.h"
#include "group.h"
#include "domain.h"
#include "region.h"
#include "random_park.h"
#include "force.h"
#include "pair.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "memory.h"
#include "error.h"
#include "neighbor.h"
//Davide include them (with more)
#include "math.h"
#include "stdlib.h"
#include "string.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "random_mars.h"
#include "citeme.h"
#include <iostream>
#include<stdlib.h>
#include <time.h> /* Important for random number generator */
#include <sstream> // std::stringstream
#include<fstream> //ofstream
#include "input.h"
#include "variable.h"
using namespace std;
using namespace LAMMPS_NS;
using namespace FixConst;
static const char cite_fix_topo2[] =
"Non-equilibrium Topo2 Strand Crossing:\n\n"
"@Article{Michieletto2018,\n"
" author = {Michieletto et al},\n"
" title = {xx},\n"
" journal = {xx},\n"
" year = 2018,\n"
" volume = xx,\n"
" pages = {xx}\n"
"}\n\n";
/* ---------------------------------------------------------------------- */
//Constructor: The name of the class is FixTopo2 and the fix-style-name to
//be used in the lammps script is fix_topo2.
FixTopo2::FixTopo2(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg),
alist(nullptr), list(nullptr), random_equal(nullptr), random_unequal(nullptr), random(nullptr)
{
//Cite
if (lmp->citeme) lmp->citeme->add(cite_fix_topo2);
//Check that the atom_style is molecular
if (atom->molecular != 1)
error->all(FLERR,"Cannot use fix_topo2 with non-molecular systems");
//Number of arguments for the fix. The first three arguments are parsed by Fix base class constructor.
//The rest are specific to this fix. From 4 to 8 are mandatory for all cases.
//4.- flagtopo: Static or randjump or jump2maxdens or jum2marcurv
//5.- ntopo: the number of topo2 in the system.
//6.- ltopo: the length of each topo2 in the system.
//7.- topotype: the topoII particle type.
//8.- seed: random seed
//If Static we need one more argument
//9.-tsteptopo: at which timestep we want to introduce the topo2
//If randjump or jump2maxdens or jum2marcurv, we need three arguments
//9.- nevery: how often the fix is called.
//10.- prob: probability that the topo2 changes position each nevery timesteps.
//11.- intertype: intermediate type assigned to atoms from a section where topo 2 is jumping from.
//commands use in fix_bond_swap
//force_reneighbor = -1;
next_reneighbor = -1;
//next_reneighbor = 1;
vector_flag = 1;
size_vector = 2;
global_freq = 1;
extvector = 0;
//Required arguments: common to all cases
flagtopo=0;
if (strcmp(arg[3],"static") == 0) {flagtopo=1;}
else if (strcmp(arg[3],"randjump") == 0) {flagtopo=2;}
else if (strcmp(arg[3],"jump2maxdens") == 0) {flagtopo=3;}
else if (strcmp(arg[3],"jump2maxcurv") == 0) {flagtopo=4;}
if( flagtopo==0 ){error->all(FLERR,"Illegal fix topo2 command");}
//Check that the number of arguments is the correct one
if( flagtopo==1){
if(narg!=9){error->all(FLERR,"Illegal fix topo2 command, a different number of arguments is required for static");}
}
if( flagtopo==2){
if(narg!=11){error->all(FLERR,"Illegal fix topo2 command, a different number of arguments is required for randjump");}
}
if( flagtopo==3){
if(narg!=11){error->all(FLERR,"Illegal fix topo2 command, a different number of arguments is required for jump2maxdens");}
}
if( flagtopo==4){
if(narg!=11){error->all(FLERR,"Illegal fix topo2 command, a different number of arguments is required for jump2maxcurv");}
}
ntopo = utils::inumeric(FLERR,arg[4],false,lmp);
if (ntopo < 0 || ntopo > atom->natoms) error->all(FLERR,"Illegal fix topo2 command: in ntopo");
ltopo = utils::inumeric(FLERR,arg[5],false,lmp);
int length = ntopo*ltopo;
if (ltopo < 0 || length > atom->natoms) error->all(FLERR,"Illegal fix topo2 command: in ltopo");
topotype = utils::inumeric(FLERR,arg[6],false,lmp);
int ilo,ihi,jlo,jhi;
utils::bounds(FLERR,arg[6],1,atom->ntypes,ilo,ihi,error);
seed = utils::inumeric(FLERR,arg[7],false,lmp);
if (seed <= 0) error->all(FLERR,"Illegal fix topo2 command");
//In case static, we have to set the timestep at which we want to introduce the topo2
if(flagtopo==1){
tsteptopo = utils::inumeric(FLERR,arg[8],false,lmp);
if (tsteptopo < 0) error->all(FLERR,"Illegal fix topo2 command");
if (tsteptopo < update->beginstep) error->all(FLERR,"Illegal fix topo2 command");
}
//In case of the last three cases additional arguments needed:
if(flagtopo>=2){
nevery = utils::inumeric(FLERR,arg[8],false,lmp);
if (nevery <= 0) error->all(FLERR,"Illegal fix topo2 command");
prob = utils::numeric(FLERR,arg[9],false,lmp);
if (prob<0.0 || prob>1.0) error->all(FLERR,"Illegal fix topo2 command");
intertype = utils::inumeric(FLERR,arg[10],false,lmp);
utils::bounds(FLERR,arg[10],1,atom->ntypes,ilo,ihi,error);
}
// random number generator, same for all procs
random_equal = new RanPark(lmp,seed);
// random number generator, not the same for all procs
random_unequal = new RanPark(lmp,seed);
// initialize Marsaglia RNG with processor-unique seed
random = new RanMars(lmp,seed + comm->me);
//To get a different random number every time the program is executed
srand(time(NULL)*seed);
//Decleare selection list
select = nullptr;
beads = nullptr;
//Declare atom list
alist = nullptr;
}
/****************/
/* Destructor */
/****************/
FixTopo2::~FixTopo2()
{
delete random_equal;
delete random_unequal;
delete random;
memory->destroy(select);
memory->destroy(beads);
memory->destroy(alist);
}
/**************/
/* Set mask */
/**************/
//It determines the stage in the timestep at which the fix will be executed.
//The post integrate method is set for operations that need to happen immediately after updates by for example fix nve which performs the start-of-timestep velocity-Verlet integration operations to update velocities by a half-step, and coordinates by a full step. Only a few fixes use this, e.g. to reflect particles off box boundaries.
int FixTopo2::setmask()
{
int mask = 0;
mask |= POST_INTEGRATE;
return mask;
}
/***********************/
/* The init() method */
/***********************/
//This is called at the beginning of each run, simply sets some internal flags
void FixTopo2::init()
{
// require an atom style with molecule IDs
if (atom->molecule == NULL)
error->all(FLERR, "Must use atom style with molecule IDs with fix topo2");
// pair and bonds must be defined
if (force->pair == NULL || force->bond == NULL)
error->all(FLERR,"Fix topo2 requires pair and bond styles");
// angles must be defined
if (force->angle == NULL && atom->nangles > 0 && comm->me == 0)
error->warning(FLERR,"Fix topo2 will ignore defined angles");
if (force->pair->single_enable == 0)
error->all(FLERR,"Pair style does not support fix topo2");
// no dihedral or improper potentials allowed
if (force->dihedral || force->improper)
error->all(FLERR,"Fix topo2 cannot use dihedral or improper styles");
// special bonds must be 0 1 1
if (force->special_lj[1] != 0.0 || force->special_lj[2] != 1.0 ||
force->special_lj[3] != 1.0)
error->all(FLERR,"Fix topo2 requires special_bonds = 0,1,1");
/*
// need a full neighbor list, built every Nevery steps
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->fix = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
//neighbor->requests[irequest]->occasional = 1;
*/
}
//Then, an init_list() method needs to be introduced to get hold of the neighbor list pointer, with a placeholder named list
//void FixTopo2::init_list(int /*id*/, NeighList *ptr)
//{
// list = ptr;
//}
/************************************************/
/* The action of this fix is implemented here */
/************************************************/
void FixTopo2::post_integrate()
{
//Print flag (1) yes print, (0) no
int printflag=1;
stringstream writeFile;
ofstream write;
//Rankid
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
//Static: TopoII chooses a random position and it stays there until the end of the simulation
if(flagtopo==1){
if(tsteptopo != update->ntimestep ) return;
//This is to print to a file with the selected ramdom id (for static).
if(printflag==1 && myrank==0){
writeFile <<"static_fromLAMMPS.dat";
write.open(writeFile.str().c_str(), std::ios_base::app);
}
//Selects a random atom id
int rng = randomid();
if(printflag==1 && myrank==0){write << update->ntimestep << " " << rng << " " << topotype << endl;}
//Change the bead-type of the particle with the previous id (from 1 to topotype)
//and also to the (ltopo-1) particles that are behind.
placetopo(rng);
}
//Random jump: with a certain frequency (nevery) the topoII can jump to a random position.
//The decision of jumping is done with a certain probability.
if(flagtopo==2){
if (update->ntimestep % nevery) return;
//This is to print to a file with the selected ramdom id (for randjump)
if(printflag==1 && myrank==0){
writeFile <<"randjump_fromLAMMPS.dat";
write.open(writeFile.str().c_str(), std::ios_base::app);
}
//The first time the programm is called it introduces a topoII with probability=1.
if (update->ntimestep == nevery){
int rng = randomid();
if(printflag==1 && myrank==0){write << update->ntimestep << " " << rng << " " << topotype << endl;}
placetopo(rng);
}
//The next times it is called
if (update->ntimestep > nevery){
//Probability of moving
double pmv = pmove();
if(pmv<=prob){
int rng = randomid();
if(printflag==1 && myrank==0){write << update->ntimestep << " " << rng << " " << topotype << endl;}
changetype();
placetopo(rng);
}
}
}
//Jump to maximum density: with a certain frequency (nevery) the topoII can jump to the position of maximum bead density.
//The decision of jumping is done with a certain probability.
if(flagtopo==3){
if (update->ntimestep % nevery) return;
//This is to print to a file with the bead-id with maximum density
if(printflag==1 && myrank==0){
writeFile <<"jump2maxdens_fromLAMMPS.dat";
write.open(writeFile.str().c_str(), std::ios_base::app);
}
//Window size (in beads) within which it is reasonable to accommodate a knot. Smaller values will not be informative
int w=50;
//The first time the programm is called it introduces a topoII with probability=1.
if (update->ntimestep == nevery){
int idmd = maxdensid(w);
if(printflag==1 && myrank==0){write << update->ntimestep << " " << idmd << " " << topotype << endl;}
placetopo(idmd);
}
//The next times it is called
if (update->ntimestep > nevery){
//Probability of moving
double pmv = pmove();
if(pmv<=prob){
int idmd = maxdensid(w);
if(printflag==1 && myrank==0){write << update->ntimestep << " " << idmd << " " << topotype << endl;}
changetype();
placetopo(idmd);
}
}
}
//Jump to maximum curvature: with a certain frequency (nevery) the topoII can jump to the position of maximum curvature.
//The decision of jumping is done with a certain probability.
if(flagtopo==4){
if (update->ntimestep % nevery) return;
//This is to print to a file with the bead-id with maximum curvature
if(printflag==1 && myrank==0){
writeFile <<"jump2maxcurv_fromLAMMPS.dat";
write.open(writeFile.str().c_str(), std::ios_base::app);
}
//Window size (in beads) within which the local curvature will be computed and integrated
int w=50;
//The first time the programm is called it introduces a topoII with probability=1.
if (update->ntimestep == nevery){
int idmc = maxcurvid(w);
if(printflag==1 && myrank==0){write << update->ntimestep << " " << idmc << " " << topotype << endl;}
placetopo(idmc);
}
//The next times it is called
if (update->ntimestep > nevery){
//Probability of moving
double pmv = pmove();
if(pmv<=prob){
int idmc = maxcurvid(w);
if(printflag==1 && myrank==0){write << update->ntimestep << " " << idmc << " " << topotype << endl;}
changetype();
placetopo(idmc);
}
}
}
next_reneighbor = update->ntimestep;
}
/* ----------------------- */
/* Choose randomly atom id */
/* ----------------------- */
int FixTopo2::randomid()
{
//The total number of atoms in the system
bigint natoms = atom->natoms;
//Choose Randomly a bead [1, natoms]
int rng;
rng = 1 + (rand() % natoms);
return rng;
}
/* -----------------------------------------------------*/
/* Find the bead with maximum density (if flagtopo==3) */
/* -----------------------------------------------------*/
int FixTopo2::maxdensid(int w)
{
/* Gather data from all processors into one global array */
/***********************************************************/
//We will use MPI_Gatherv for this purpose, so here is a description:
//int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, const int *recvcounts, const int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)
//sendbuf = **x: starting address of send buffer (choice)
//sendcount = nlocal: number of elements in send buffer (integer)
//sendtype = MPI_DOUBLE: data type of send buffer elements (handle)
//recvbuf = xpos: address of receive buffer (choice, significant only at root)
//recvcounts = nlarray[mysize]: integer array (of length group size) containing the number of elements that are received from each process (significant only at root)
//displs = disp[mysize]: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i
//recvtype = MPI_DOUBLE: data type of recv buffer elements (significant only at root) (handle)
//root = myrank==0: rank of receiving process (integer)
//comm: communicator (handle)
//Declaration of arrays used in this section
int *nlarray = nullptr;
int *disp = nullptr;
int *indice = nullptr;
double *xpos = nullptr;
double *ypos = nullptr;
double *zpos = nullptr;
double **globalpos = nullptr;
//Number of ranks used
int mysize;
MPI_Comm_size(MPI_COMM_WORLD, &mysize);
//Rankid
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
bigint natoms = atom->natoms;
int nlocal = atom->nlocal;
int nghost = atom->nghost;
int m = nlocal+nghost;
//Define in rank0 an array which entries are the number (nlocal), of atoms in each processor
if (myrank == 0) {
memory->destroy(nlarray);
memory->create(nlarray,mysize, "FixTopo2::maxdensid()");
}
MPI_Gather(&nlocal, 1, MPI_INT, nlarray, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* //Check
fprintf(screen,"mysize=%d, myrank=%d, nlocal=%d \n",mysize,myrank,nlocal);
if (myrank == 0) {
for(int i=0; i<mysize; i++){
fprintf(screen,"i=%d, nlarray[i]=%d \n",i, nlarray[i]);
}
}
*/
int totlen = 0;
//Space between two consecutive entries
int space =0;
//Define in rank0 an array which contains the displacement between entries, when using MPI_Gatherv.
if (myrank == 0) {
memory->destroy(disp);
memory->create(disp,mysize, "FixTopo2::maxdensid()");
disp[0]=0;
totlen += nlarray[0];
for (int i=1; i<mysize; i++) {
totlen += nlarray[i];
disp[i] = disp[i-1] + nlarray[i-1] + space;
}
// allocate memory for atom with positions
memory->destroy(xpos);
memory->destroy(ypos);
memory->destroy(zpos);
memory->destroy(indice);
memory->create(xpos,natoms,"FixTopo2::maxdensid()");
memory->create(ypos,natoms,"FixTopo2::maxdensid()");
memory->create(zpos,natoms,"FixTopo2::maxdensid()");
memory->create(indice,natoms,"FixTopo2::maxdensid()");
}
//We are going to gather the global indices that come from local in each rank
tagint *tag = atom->tag;
//Also we are going to gather the x,y,z position from each rank
double **x = atom->x;
double xtemp[nlocal];
double ytemp[nlocal];
double ztemp[nlocal];
for(int l=0; l<nlocal; l++)
{
xtemp[l]=x[l][0];
ytemp[l]=x[l][1];
ztemp[l]=x[l][2];
}
MPI_Gatherv(tag, nlocal, MPI_INT, indice, nlarray, disp, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gatherv(xtemp, nlocal, MPI_DOUBLE, xpos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gatherv(ytemp, nlocal, MPI_DOUBLE, ypos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gatherv(ztemp, nlocal, MPI_DOUBLE, zpos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if (myrank == 0) {
//Initialize array to store all the atom positions:
memory->destroy(globalpos);
memory->create(globalpos,natoms,3, "FixTopo2::maxdensid()");
for(int i=0; i<natoms; i++){
int g = indice[i];
globalpos[g-1][0] = xpos[i];
globalpos[g-1][1] = ypos[i];
globalpos[g-1][2] = zpos[i];
//fprintf(screen,"i=%d, x=%f, y=%f, z=%f \n", indice[i], xpos[i], ypos[i], zpos[i]);
}
//for(int i=0; i<natoms; i++){
// fprintf(screen,"i=%d, x=%f, y=%f, z=%f \n", i+1, globalpos[i][0], globalpos[i][1], globalpos[i][2]);
//}
}
/* Local density is computed within a sphere of radius R */
/*********************************************************/
int *idmdarray = nullptr;
int idmaxdens;
if (myrank == 0) {
memory->destroy(idmdarray);
memory->create(idmdarray,mysize,"FixTopo2::maxdensid()");
double R=pow(w,0.588);
double Rsqd=R*R;
int maxdens=0;
int md;
for(int g=0; g<natoms;g++){
int localdens=0;
double xtmp = globalpos[g][0];
double ytmp = globalpos[g][1];
double ztmp = globalpos[g][2];
for (int j=0;j<natoms;j++){
// calculate distance-squared between g,j atom-types
double delx = xtmp - globalpos[j][0];
double dely = ytmp - globalpos[j][1];
double delz = ztmp - globalpos[j][2];
double rsq = delx*delx + dely*dely + delz*delz;
if (rsq < Rsqd) { localdens += 1;}
}
if(localdens>maxdens){
maxdens=fabs(localdens);
md=g+1;
}
}
//We store a copy of the particle id with maximum density into this array
//that is only defined in rank0
for(int s=0; s<mysize; s++){
idmdarray[s] = md;
}
}
//Send the id with maximum density to all ranks
MPI_Scatter(idmdarray, 1, MPI_INT, &idmaxdens, 1, MPI_INT, 0, MPI_COMM_WORLD);
return idmaxdens;
}
/* -----------------------------------------------------*/
/* Find the bead with maximum curvature (if flagtopo==4) */
/* -----------------------------------------------------*/
int FixTopo2::maxcurvid(int w)
{
/* Gather data from all processors into one global array */
/***********************************************************/
//We will use MPI_Gatherv for this purpose, so here is a description:
//int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, const int *recvcounts, const int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)
//sendbuf = **x: starting address of send buffer (choice)
//sendcount = nlocal: number of elements in send buffer (integer)
//sendtype = MPI_DOUBLE: data type of send buffer elements (handle)
//recvbuf = xpos: address of receive buffer (choice, significant only at root)
//recvcounts = nlarray[mysize]: integer array (of length group size) containing the number of elements that are received from each process (significant only at root)
//displs = disp[mysize]: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i
//recvtype = MPI_DOUBLE: data type of recv buffer elements (significant only at root) (handle)
//root = myrank==0: rank of receiving process (integer)
//comm: communicator (handle)
//Declaration of arrays used in this section
int *nlarray = nullptr;
int *disp = nullptr;
int *indice = nullptr;
double *xpos = nullptr;
double *ypos = nullptr;
double *zpos = nullptr;
double **globalpos = nullptr;
//Number of ranks used
int mysize;
MPI_Comm_size(MPI_COMM_WORLD, &mysize);
//Rankid
int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
bigint natoms = atom->natoms;
int nlocal = atom->nlocal;
int nghost = atom->nghost;
int m = nlocal+nghost;
//Define in rank0 an array which entries are the number (nlocal), of atoms in each processor
if (myrank == 0) {
memory->destroy(nlarray);
memory->create(nlarray,mysize, "FixTopo2::maxcurvid()");
}
MPI_Gather(&nlocal, 1, MPI_INT, nlarray, 1, MPI_INT, 0, MPI_COMM_WORLD);
/* //Check
fprintf(screen,"mysize=%d, myrank=%d, nlocal=%d \n",mysize,myrank,nlocal);
if (myrank == 0) {
for(int i=0; i<mysize; i++){
fprintf(screen,"i=%d, nlarray[i]=%d \n",i, nlarray[i]);
}
}
*/
int totlen = 0;
//Space between two consecutive entries
int space =0;
//Define in rank0 an array which contains the displacement between entries, when using MPI_Gatherv.
if (myrank == 0) {
memory->destroy(disp);
memory->create(disp,mysize, "FixTopo2::maxcurvid()");
disp[0]=0;
totlen += nlarray[0];
for (int i=1; i<mysize; i++) {
totlen += nlarray[i];
disp[i] = disp[i-1] + nlarray[i-1] + space;
}
// allocate memory for atom with positions
memory->destroy(xpos);
memory->destroy(ypos);
memory->destroy(zpos);
memory->destroy(indice);
memory->create(xpos,natoms,"FixTopo2::maxcurvid()");
memory->create(ypos,natoms,"FixTopo2::maxcurvid()");
memory->create(zpos,natoms,"FixTopo2::maxcurvid()");
memory->create(indice,natoms,"FixTopo2::maxcurvid()");
}
//We are going to gather the global indices that come from local in each rank
tagint *tag = atom->tag;
//Also we are going to gather the x,y,z position from each rank the unwrapped coordinates
double **x = atom->x;
double xtemp[nlocal];
double ytemp[nlocal];
double ztemp[nlocal];
imageint *image = atom->image;
double unwrap[3];
for(int l=0; l<nlocal; l++)
{
domain->unmap(x[l],image[l],unwrap);
xtemp[l]=unwrap[0];
ytemp[l]=unwrap[1];
ztemp[l]=unwrap[2];
}
MPI_Gatherv(tag, nlocal, MPI_INT, indice, nlarray, disp, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Gatherv(xtemp, nlocal, MPI_DOUBLE, xpos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gatherv(ytemp, nlocal, MPI_DOUBLE, ypos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
MPI_Gatherv(ztemp, nlocal, MPI_DOUBLE, zpos, nlarray, disp, MPI_DOUBLE, 0, MPI_COMM_WORLD);
if (myrank == 0) {
//Initialize array to store all the atom positions:
memory->destroy(globalpos);
memory->create(globalpos,natoms,3, "FixTopo2::maxcurvid()");
for(int i=0; i<natoms; i++){
int g = indice[i];
globalpos[g-1][0] = xpos[i];
globalpos[g-1][1] = ypos[i];
globalpos[g-1][2] = zpos[i];
//fprintf(screen,"i=%d, x=%f, y=%f, z=%f \n", indice[i], xpos[i], ypos[i], zpos[i]);
}
//for(int i=0; i<natoms; i++){
// fprintf(screen,"i=%d, x=%f, y=%f, z=%f \n", i+1, globalpos[i][0], globalpos[i][1], globalpos[i][2]);
//}
}
/* Local curvature computed within a window */
/********************************************/
int *idmcarray = nullptr;
int idmaxcurv;
if (myrank == 0) {
memory->destroy(idmcarray);
memory->create(idmcarray,mysize,"FixTopo2::maxcurvid()");
double maxcurv=0;
double localcurv[natoms];
int mc;
for(int g=0; g<natoms;g++){
localcurv[g]=0;
//loop over window centered at g
for (int j=0; j<=w;j++) {
double tang1[3];
double tang2[3];
//Three consecutive beads
int b1=int(g+j-w/2.)-1;
int b2=int(g+j-w/2.);
int b3=int(g+j-w/2.)+1;
if(b1<0)b1=natoms+b1; // [0:natoms-1]
if(b2<0)b2=natoms+b2; // [0:natoms-1]
if(b3<0)b3=natoms+b3; // [0:natoms-1]
if(b1>=natoms)b1=b1%natoms; // [0:natoms-1]
if(b2>=natoms)b2=b2%natoms; // [0:natoms-1]
if(b3>=natoms)b3=b3%natoms; // [0:natoms-1]
//Two consecutive tangents
for(int d=0; d<3; d++){
tang1[d] = globalpos[b2][d]-globalpos[b1][d];
tang2[d] = globalpos[b3][d]-globalpos[b2][d];
}
double norm1=sqrt(tang1[0]*tang1[0]+tang1[1]*tang1[1]+tang1[2]*tang1[2]);
double norm2=sqrt(tang2[0]*tang2[0]+tang2[1]*tang2[1]+tang2[2]*tang2[2]);
double costheta=(tang1[0]*tang2[0]+tang1[1]*tang2[1]+tang1[2]*tang2[2])/(norm1*norm2);
//integrate over window
//divide by w to get the "average"
localcurv[g]+=(1.0-costheta)*1.0/w;
}
if(localcurv[g]>maxcurv){
maxcurv=localcurv[g];
mc=g+1;
}
}
//We store a copy of the particle id with maximum curvature into this array
//that is only defined in rank0
for(int s=0; s<mysize; s++){
idmcarray[s] = mc;
}
}
//Send the id with maximum density to all ranks
MPI_Scatter(idmcarray, 1, MPI_INT, &idmaxcurv, 1, MPI_INT, 0, MPI_COMM_WORLD);
return idmaxcurv;
}
/* ------------------ */
/* Moving probability */
/* ------------------ */
double FixTopo2::pmove()
{
//This is a number between 0 and 1.
double pmv=rand()*1.0/RAND_MAX;
return pmv;
}
/* ---------- */
/* Place topo */
/* ---------- */
void FixTopo2::placetopo(int id)
{
//The total number of atoms in the system
bigint natoms = atom->natoms;
//The number of owned atoms belonging to the core that executes this line
int nlocal = atom->nlocal;
//The number of ghost atoms
int nghost = atom->nghost;
//Both owned and ghost atoms
int n = nlocal+nghost;
delete [] select;
select = new int[n];
//useful for converting from local to global
tagint *tag = atom->tag;
//Define the global id of the ltopo-consecutive beads that are going to change type.
delete [] beads;
beads = new int[ltopo];
for (int i=0;i<ltopo;i++){
int g=(id-ltopo+i);
if(g<0)g+=natoms;
beads[i]=g+1;
//fprintf(screen,"Global id that will change type: %d \n",beads[i]);
}
//Firts select the local atoms that are going to change type according to the previously global selected ids
for (int l = 0; l < nlocal; l++){
select[l] = 0;
for (int i=0; i<ltopo; i++){
int g=beads[i];
if (tag[l] == g) {
select[l] = 1;
//fprintf(screen," l=%d, tag[l]=%d, g=%d \n",l,tag[l], g);
}
}
}
//Change the type of previously selected atoms
for (int l = 0; l < nlocal; l++) {
if (!select[l]) continue;
atom->type[l] = topotype;
}
}
/* ------------------------ */
/* Change type intermediate */
/* ------------------------ */
void FixTopo2::changetype()
{
//The number of owned atoms belonging to the core that executes this line
int nlocal = atom->nlocal;
//The number of ghost atoms
int nghost = atom->nghost;
//Both owned and ghost atoms
int n = nlocal+nghost;
delete [] select;
select = new int[n];
//useful for converting from local to global
tagint *tag = atom->tag;
//Change the type of atoms from (topotype+1) to 1
for (int l = 0; l < nlocal; l++) {
if(atom->type[l] == topotype+1) atom->type[l] = 1;
}
//Change the type of atoms from (topotype) to (intertype)
for (int l = 0; l < nlocal; l++) {
if(atom->type[l] == topotype) atom->type[l] = intertype;
}
}
/***********************************************************************/
/* Needed to write a restart file that can continue with the simulation*/
/***********************************************************************/
void FixTopo2::write_restart(FILE *fp)
{
int n = 0;
double list[4];
list[n++] = random_equal->state();
list[n++] = random_unequal->state();
list[n++] = ubuf(next_reneighbor).d;
list[n++] = ubuf(update->ntimestep).d;
if (comm->me == 0) {
int size = n * sizeof(double);
fwrite(&size,sizeof(int),1,fp);
fwrite(list,sizeof(double),n,fp);
}
}
/* ----------------------------------------------------------------------
use state info from restart file to restart the Fix
------------------------------------------------------------------------- */
void FixTopo2::restart(char *buf)
{
int n = 0;
double *list = (double *) buf;
seed = static_cast<int> (list[n++]);
random_equal->reset(seed);
seed = static_cast<int> (list[n++]);
random_unequal->reset(seed);
next_reneighbor = (bigint) ubuf(list[n++]).i;
bigint ntimestep_restart = (bigint) ubuf(list[n++]).i;
if (ntimestep_restart != update->ntimestep)
error->all(FLERR,"Must not reset timestep when restarting fix topo2");
}