Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[pandas](http://pandas.pydata.org) provides high-level data structures and functions designed to make working with structured or tabular data fast, easy and expressive. The primary objects in pandas that we will be using are the `DataFrame`, a tabular, column-oriented data structure with both row and column labels, and the `Series`, a one-dimensional labeled array object.\n",
"\n",
"pandas blends the high-performance, array-computing ideas of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases. It provides sophisticated indexing functionality to make it easy to reshape, slice and perform aggregations.\n",
"While pandas adopts many coding idioms from NumPy, the most significant difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n",
"- [Data Structures](#structures)\n",
" - [Series](#series)\n",
" - [DataFrame](#dataframe)\n",
"- [Essential Functionality](#ess_func)\n",
" - [Reindexing](#reindexing)\n",
" - [Dropping Entries](#removing)\n",
" - [Indexing, Slicing and Filtering](#indexing)\n",
" - [Arithmetic Operations](#arithmetic)\n",
"- [Summarizing and Computing Descriptive Statistics](#sums)\n",
"- [Loading and storing data](#loading)\n",
" - [Text Format](#text) \n",
" - [Web Scraping](#web)\n",
"- [Data Cleaning and preperation](#cleaning)\n",
" - [Handling missing data](#missing)\n",
" - [Data transformation](#transformation)\n",
"- [String manipulation](#strings)\n",
"\n",
"The common pandas import statment is shown below:"
"metadata": {},
"outputs": [],
"source": [
"# Common pandas import statement\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Structures <a name=\"structures\"></a>\n",
"## Series <a name=\"series\"></a>\n",
"A Series is a one-dimensional array-like object containing a sequence of values and an associated array of data labels called its index.\n",
"\n",
"The easiest way to make a Series is from an array of data:"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data = pd.Series([4, 7, -5, 3])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now try printing out data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 4\n",
"1 7\n",
"2 -5\n",
"3 3\n",
"dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The string representation of a Series displayed interactively shows the index on the left and the values on the right. Because we didn't specify an index, the default on is simply integers 0 through N-1.\n",
"\n",
"You can output only the values of a Series using \n",
"```python\n",
"data.values\n",
"```\n",
"```python\n",
"data.index\n",
"```\n",
"Try it out below!"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"array([ 4, 7, -5, 3])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can specify custom indeces when intialising the Series"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data2 = pd.Series([4, 7, -5, 3], index=[\"a\", \"b\", \"c\", \"d\"])"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"a 4\n",
"b 7\n",
"c -5\n",
"d 3\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can use these labels to access the data similar to a normal array"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another way to think about Series is as a fixed-length ordered dictionary. Furthermore, you can actually define a Series in a similar manner to a dictionary"
"metadata": {},
"outputs": [],
"source": [
"cities = {\"Glasgow\" : 599650, \"Edinburgh\" : 464990, \"Abardeen\" : 196670, \"Dundee\" : 147710}\n",
"data3 = pd.Series(cities)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 599650\n",
"Edinburgh 464990\n",
"Abardeen 196670\n",
"Dundee 147710\n",
"dtype: int64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can do arithmetic operations between Series similar to NumPy arrays. Even if you have 2 datasets with different data, arithmetic operations will be aligned according to their indices.\n",
"\n",
"Let's look at an example"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"cities_uk = {\"Birmingham\" : 1092330, \"Leeds\": 751485, \"Glasgow\" : 599650,\n",
" \"Manchester\" : 503127, \"Edinburgh\" : 464990}\n",
"data4 = pd.Series(cities_uk)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Abardeen NaN\n",
"Birmingham NaN\n",
"Dundee NaN\n",
"Edinburgh 929980.0\n",
"Glasgow 1199300.0\n",
"Leeds NaN\n",
"Manchester NaN\n",
"dtype: float64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3 + data4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how some of the results are NaN? Well, that is because there were no instances of those cities within both of the datasets. You can usually extract NaNs from a Series with\n",
"```python\n",
"data4.isnull()\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type. The DataFrame has both row and column index and can be thought of as a dict of Series all sharing the same index.\n",
"\n",
"The most common way to create a DataFrame is with dicts"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
" \"population\" : [599650, 464990, 196670, 147710],\n",
" \"year\" : [2011, 2013, 2013, 2013]}\n",
"frame = pd.DataFrame(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Try printing it out"
]
},
{
"cell_type": "code",
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cities population year\n",
"0 Glasgow 599650 2011\n",
"1 Edinburgh 464990 2013\n",
"2 Abardeen 196670 2013\n",
"3 Dundee 147710 2013"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jupyter Notebooks prints it out in a nice table but the basic version of this is also just as readable!\n",
"\n",
"Additionally you can also specify the order of columns during initialisation"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2 = pd.DataFrame(data, columns=[\"year\", \"cities\", \"population\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can retrieve a particular column from a DataFrame with\n",
"```python\n",
"frame[\"cities\"]\n",
"```\n",
"The result is going to be a Series\n",
"\n",
"Additionally, you can retrieve a row from the dataset using\n",
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-30-dd699a264eca>, line 1)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-30-dd699a264eca>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m frame[index=1]\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"frame[1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is also possible to add and modify the columns of a DataFrame"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = 100"
]
},
{
"cell_type": "code",
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>size</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2013</td>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013</td>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2013</td>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>100</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year cities population size\n",
"0 2011 Glasgow 599650 100\n",
"1 2013 Edinburgh 464990 100\n",
"2 2013 Abardeen 196670 100\n",
"3 2013 Dundee 147710 100"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame2"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = [175, 264, 65.1, 60] # in km^2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to dicts, columns can be deleted using\n",
"```python\n",
"del frame2[\"size\"]\n",
"```"
]
},
{
"cell_type": "code",
"source": [
"del frame2[\"size\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another common way of creating DataFrames is from a nested dict of dicts:"
]
},
{
"cell_type": "code",
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cities population year\n",
"0 Glasgow 599650 2011\n",
"1 Edinburgh 464990 2013\n",
"2 Abardeen 196670 2013\n",
"3 Dundee 147710 2013"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2 = {\"Glasgow\": {2011: 599650},\n",
" \"Edinburgh\": {2013:464990},\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a table of different ways of initialising a DataFrame for your reference\n",
"\n",
"| Type | Notes |\n",
"| --- | --- |\n",
"| 2D ndarray | A matrix of data; passing optional row and column labels |\n",
"| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length |\n",
"| NumPy structured/recorded array | Treated as with the \"dict of arrays, lists or tuples\" case |\n",
"| dict of Series | Each value becomes a column; indexes from each Series are unioned together to<br>form the result's row index if not explicit index is passed |\n",
"| dict of dicts | Each inner dict becomes a column; keys are unioned to form the row<br>index as in the \"dict of Series\" case |\n",
"| List of dicts or Series | Each item becomes a row in the DataFrame; union of dict keys or<br>Series indices becomes the DataFrame's column labels |\n",
"| List of lists or tuples | Treated as the \"2D ndarray\" case |\n",
"| Another DataFrame | The DataFrame's indexes are used unless different ones are passed |\n",
"| NumPy MaskedArray | Like the \"2D ndarray\" case except masked values become NA/missing in the DataFrame |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Essential Functionality <a name=\"ess_func\"></a>\n",
"In this section, we will go through the fundamental mechanics of interacting with the data contained in a Series or DaraFrame."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With pandas it is easy to restructure the order of your columns and rows using the `reindex` function. Let's have a look at an example:"
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 1\n",
"b 2\n",
"c 3\n",
"d 4\n",
"e 5\n",
"dtype: int64"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# first define a new Series\n",
"s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"d 4\n",
"b 2\n",
"a 1\n",
"c 3\n",
"e 5\n",
"dtype: int64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now you can reshuffle the indices\n",
"s = s.reindex(['d', 'b', 'a', 'c', 'e'])\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Easy as that! This can also be extended for DataFrames, where you can reorder both the columns and indices at the same time!"
]
},
{
"cell_type": "code",
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5\n",
"c 6 7 8"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# first define a new Dataframe\n",
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"df"
]
},
{
"cell_type": "code",
"source": [
"# Now we can restructure it with reindex\n",
"df = df.reindex(index=[\"a\", \"d\", \"c\", \"b\"],\n",
" columns=[\"Aberdeen\", \"Glasgow\", \"Edinburgh\", \"Dundee\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice something interesting? We can actually add new indices and columns using the `reindex` method. This results in the new slots in our table to be filled in with `NaN` values."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Removing columns/indices <a name=\"removing\"></a>\n",
"Similarl to above, it is easy to remove entries. This is done with the `drop` method and can be applied to both columns and indices:"
]
},
{
"cell_type": "code",
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"c 6 7 8"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# define new DataFrame\n",
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"\n",
"df.drop(\"b\")"
]
},
{
"cell_type": "code",
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Glasgow</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>7</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Glasgow\n",
"a 1\n",
"b 4\n",
"c 7"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# You can also drop from a column\n",
"df.drop([\"Aberdeen\", \"Edinburgh\"], axis=\"columns\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexing, slicing and filtering <a name=\"indexing\"></a>\n",
"\n",
"### Indexing\n",
"\n",
"Series indexing works analogously to NumPy array indexing (i.e. data[...]). You can also use the Serie's index values instead of only integers:"
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 0\n",
"b 1\n",
"c 2\n",
"d 3\n",
"dtype: int64"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s = pd.Series(np.arange(4), index=['a', 'b', 'c', 'd'])\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[1]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[3]"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"c\"]"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"b 1\n",
"d 3\n",
"dtype: int64"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[[1,3]]"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 0\n",
"b 1\n",
"dtype: int64"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[s<2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A subtle difference when indexing in pandas is that unlike in normal Python, slicing here is inclusive at the end-point."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"b 1\n",
"c 2\n",
"dtype: int64"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s[\"b\":\"c\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All of the above also apply to DataFrames:"
]
},
{
"cell_type": "code",
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5\n",
"c 6 7 8"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"\n",
"df"
]
},
{
"cell_type": "code",
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[:2]"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 1\n",
"b 4\n",
"c 7\n",
"Name: Glasgow, dtype: int64"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"Glasgow\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For DataFrame label-indexing on the rows, you can use `loc` for labels and `iloc` for integer-indexing."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Edinburgh 3\n",
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[\"b\"]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.loc[\"b\", [\"Glasgow\", \"Aberdeen\"]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's try `iloc`"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Edinburgh 3\n",
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[1]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 4\n",
"Aberdeen 5\n",
"Name: b, dtype: int64"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[1, [1,2]]"
]
},
{
"cell_type": "code",
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:2]"
]
},
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Summary of indexing:\n",
"\n",
"| Type | Notes |\n",
"| -- | -- |\n",
"| df\\[val\\] | Select single column or sequency of columns from a DataFrame |\n",
"| df.loc\\[val\\] | Select single row or subset of rows from a DataFrame by label |\n",
"| df.loc\\[:, val\\] | Select single column or subset of columns by label |\n",
"| df.loc\\[val1, val2\\] | Select both rows and columns by label |\n",
"| df.iloc\\[idx\\] | Select single row or subset of rows from DataFrame by integer position |\n",
"| df.iloc\\[:, idx\\] | Select single column or subset of columns by integer position |\n",
"| df.iloc\\[idx1, idx2\\] | Select both rows and columns by integer position |\n",
"| reindex method | Select either rows or columns by labels |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 1\n",
"A dataset of random numbers is created below. Index the 47th column and the 22nd row. You should get the number **4621**.\n",
"\n",
"*Note: Remember that Python uses 0-based indexing*"
]
},
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4722"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"df = pd.DataFrame(np.reshape(np.arange(10000), (100,100)))\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 2\n",
"Using the same DataFrame from the previous exercise, obtain all rows starting from row 85 to 97."
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 47\n",
"1 147\n",
"2 247\n",
"3 347\n",
"4 447\n",
"5 547\n",
"6 647\n",
"7 747\n",
"8 847\n",
"9 947\n",
"10 1047\n",
"11 1147\n",
"12 1247\n",
"13 1347\n",
"14 1447\n",
"15 1547\n",
"16 1647\n",
"17 1747\n",
"18 1847\n",
"19 1947\n",
"20 2047\n",
"21 2147\n",
"22 2247\n",
"23 2347\n",
"24 2447\n",
"25 2547\n",
"26 2647\n",
"27 2747\n",
"28 2847\n",
"29 2947\n",
" ... \n",
"70 7047\n",
"71 7147\n",
"72 7247\n",
"73 7347\n",
"74 7447\n",
"75 7547\n",
"76 7647\n",
"77 7747\n",
"78 7847\n",
"79 7947\n",
"80 8047\n",
"81 8147\n",
"82 8247\n",
"83 8347\n",
"84 8447\n",
"85 8547\n",
"86 8647\n",
"87 8747\n",
"88 8847\n",
"89 8947\n",
"90 9047\n",
"91 9147\n",
"92 9247\n",
"93 9347\n",
"94 9447\n",
"95 9547\n",
"96 9647\n",
"97 9747\n",
"98 9847\n",
"99 9947\n",
"Name: 47, Length: 100, dtype: int64"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When you are performing arithmetic operations between two objects, if any index pairs are not the same, the respective index in the result will be the union of the index pair. Let's have a look"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a NaN\n",
"b 1.0\n",
"c 3.0\n",
"d 5.0\n",
"e NaN\n",
"k NaN\n",
"dtype: float64"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s1 = pd.Series(np.arange(5), index=[\"a\", \"b\", \"c\", \"d\", \"e\"])\n",
"s2 = pd.Series(np.arange(4), index=[\"b\", \"c\", \"d\", \"k\"])\n",
"s1 + s2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The internal data alignment introduces missing values in the label locations that don't overlap. It is similar for DataFrames:"
]
},
{
"cell_type": "code",
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d\n",
"0 0 1 2 3\n",
"1 4 5 6 7\n",
"2 8 9 10 11"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame(np.arange(12).reshape((3,4)),\n",
" columns=list(\"abcd\"))\n",
"df1"
]
},
{
"cell_type": "code",
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>12</td>\n",
" <td>13</td>\n",
" <td>14</td>\n",
" <td>15</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" c d e f\n",
"0 0 1 2 3\n",
"1 4 5 6 7\n",
"2 8 9 10 11\n",
"3 12 13 14 15"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2 = pd.DataFrame(np.arange(16).reshape((4,4)),\n",
" columns=list(\"cdef\"))\n",
"df2"
]
},
{
"cell_type": "code",
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
"execution_count": 60,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>10.0</td>\n",
" <td>12.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18.0</td>\n",
" <td>20.0</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d e f\n",
"0 NaN NaN 2.0 4.0 NaN NaN\n",
"1 NaN NaN 10.0 12.0 NaN NaN\n",
"2 NaN NaN 18.0 20.0 NaN NaN\n",
"3 NaN NaN NaN NaN NaN NaN"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# adding the two\n",
"df1+df2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how where we don't have matching values from `df1` and `df2` the output of the addition operation is `NaN` since there are no two numbers to add.\n",
"\n",
"Well, we can \"fix\" that by filling in the `NaN` values. This effectively tells pandas where there are no two values to add, assume that the missing value is just zero."
]
},
{
"cell_type": "code",
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" <th>c</th>\n",
" <th>d</th>\n",
" <th>e</th>\n",
" <th>f</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>10.0</td>\n",
" <td>12.0</td>\n",
" <td>6.0</td>\n",
" <td>7.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8.0</td>\n",
" <td>9.0</td>\n",
" <td>18.0</td>\n",
" <td>20.0</td>\n",
" <td>10.0</td>\n",
" <td>11.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>12.0</td>\n",
" <td>13.0</td>\n",
" <td>14.0</td>\n",
" <td>15.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b c d e f\n",
"0 0.0 1.0 2.0 4.0 2.0 3.0\n",
"1 4.0 5.0 10.0 12.0 6.0 7.0\n",
"2 8.0 9.0 18.0 20.0 10.0 11.0\n",
"3 NaN NaN 12.0 13.0 14.0 15.0"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
"source": [
"df1.add(df2, fill_value=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another important point here is although the normal arithmetic operations work here, there also exist dedicated methods like `DataFrame.add()` which achieve the same functionality + a bit extra.\n",
"\n",
"Here's a list of all arithmetic operations within pandas:\n",
"\n",
"| Operator | Method | Description |\n",
"| -- | -- | -- |\n",
"| + | add, radd | Addition |\n",
"| - | sub, rsub | Subtraction |\n",
"| / | div, rdiv | Division |\n",
"| // | floordiv, rfloordiv | Floor division |\n",
"| * | mul, rmul | Multiplication |\n",
"| ** | pow, rpow | Exponentiation |\n",
"\n",
"Notice how some of the methods have `r` in front of them? That stands for reversed and effectively reverses the operands. For example\n",
"\n",
"```python\n",
"df1.div(df2)\n",
"```\n",
"would be the same as\n",
"```python\n",
"df2/df1\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise 3\n",
"Create a (3,3) DataFrame and square all elements in it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Broadcasting\n",
"Similar to numpy, in pandas you can also broadcast data structures. Let's consider a simple example:"
]
},
{
"cell_type": "code",
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>8</td>\n",
" <td>9</td>\n",
" <td>10</td>\n",
" <td>11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>12</td>\n",
" <td>13</td>\n",
" <td>14</td>\n",
" <td>15</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 0 1 2 3\n",
"0 0 1 2 3\n",
"1 4 5 6 7\n",
"2 8 9 10 11\n",
"3 12 13 14 15"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame(np.arange(16).reshape((4,4)))\n",
"df1"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 0\n",
"1 1\n",
"2 2\n",
"3 3\n",
"dtype: int64"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2 = pd.Series(np.arange(4))\n",
"df2"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
Loading
Loading full blame...