Skip to content
Snippets Groups Projects
NHS_WES_generate_DEC_IGV.py 54.3 KiB
Newer Older
#	input:
#		the family PED file				[${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped]
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
#		individual VCF file for the trio proband	[${FAMILY_ID}-gatk-haplotype-annotated.${SAMPLE_ID}.vcf.gz]
#		G2P text output for the trio			[${FAMILY_ID}.report.txt]
#		VASE output					[${SAMPLE_ID}.clean.strict.denovo.vcf]
#
#
#	output:
#		DECIPHER formated file for the proband
#		- all G2P variants
#		- denovo variants marked as such
#
#	checks:
#		all G2P variants found in the individual VCF
#		all VASE denovo variants found in the individual VCF
#
#       Author: MH
#       last modified: DEC 05, 2019



import sys
import os
import csv
import gzip
from collections import defaultdict


ASSEMBLY = 'GRCh38'
INTERGENIC = 'No'
ACCESS = 'No'


G2P_DICT = {}		# key: chr:pos:ref:alt; value: 0 (if found only in G2P); 1 (if found in VCF) - for variants found in G2P output for this CHILD_ID
G2P_DATA = {}		# key: chr:pos:ref:alt; value: (transcript,gene,GT)
VASE_DICT = {}		# key: chr:pos:ref:alt; value: 0 (if found only in VASE); 1 (if found in VCF) - for variants found in VASE output for this CHILD_ID


NUM_UNIQ_G2P_VARS = 0
NUM_UNIQ_VASE_VARS = 0


CHILD_ID = 0
CHILD_SEX = 0
DEC_CHILD_SEX = 'unknown'

MOM_ID = 0
MOM_STAT = 0	# 1 = UNAFF, 2 = AFF

DAD_ID = 0
DAD_STAT = 0	# 1 = UNAFF, 2 = AFF


ALL_CHILD_DICT = {}		# key: chr:pos:ref:alt; value: (num_ALT_reads,VAF)
ALL_MOM_DICT = {}		# key: chr:pos:ref:alt; value: irrelevant
ALL_DAD_DICT = {}		# key: chr:pos:ref:alt; value: irrelevant


CHILD_INHER_DICT = {}		# key: chr:pos:ref:alt; value: 'Paternally inherited, constitutive in father' | 'Maternally inherited, constitutive in mother' | 'Biparental' | 'De novo constitutive' | 'Unknown'

SNAP_FLANK = 25


MAP_DICT = {}			# key: family_id (aka decipher_id); value: internal (decipher) ID
TRANS_DICT = {}			# key: transcriptID not found in DECIPHER; value: the chosen replacement transcriptID from those available in DECIPHER






### call the python scrpit
#time ${PYTHON2} ${SCRIPTS_DIR}/NHS_WES_generate_DEC_IGV.py \
#${DEC_MAP} \
#${TRANS_MAP} \
#${PED_FILE} \
#${IN_G2P_FILE} \
#${IN_VASE_FILE} \
#${FAM_IGV_DIR} \
#${VCF_DIR} \
#${PLATE_ID} \
#${FAMILY_ID} \
#${DEC_DIR} \
#${FAM_BAM_DIR}







def go(dec_map_file,trans_map_file,ped_file,in_g2p_file,in_vase_file,fam_igv_dir,vcf_dir,plate_id,fam_id,dec_dir,fam_bam_dir):

    # read the decipher to internal ID mapping file
    read_map_file(dec_map_file)


    # read the transcript mapping file
    read_trans_map(trans_map_file)


    # read the ped file and establish CHILD_ID,CHILD_SEX,MOM_ID,DAD_ID
    read_ped(ped_file)

    if (CHILD_ID != 0) and (CHILD_SEX != 0) and (DEC_CHILD_SEX != 'unknown') and (MOM_ID != 0) and (MOM_STAT != 0) and (DAD_ID != 0) and (MOM_STAT != 0):
        print "======================================"
        print "Analyzing:"
        print "CHILD_ID = %s, CHILD_SEX = %s, DEC_CHILD_SEX = %s" % (CHILD_ID,CHILD_SEX,DEC_CHILD_SEX)
        print "MOM_ID = %s, MOM_STATUS = %s" % (MOM_ID,MOM_STAT)
        print "DAD_ID = %s, DAD_STATUS = %s" % (DAD_ID,DAD_STAT)
        print "======================================"
        sys.stdout.flush() 
    else:
        print "ERROR: problems reading the PED file = %s" % (ped_file)
        raise SystemExit       


    # read the G2P output for this family
    read_G2P(in_g2p_file)


    # read the VASE output for this family
    read_VASE(in_vase_file)


    # now read the individual VCFs and record all the variants
    child_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,CHILD_ID)
    mom_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,MOM_ID)
    dad_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,DAD_ID)


    read_all_VCF_vars(child_vcf_file,ALL_CHILD_DICT)
    print "Found %s unique VCF variants for CHILD (%s)" % (len(ALL_CHILD_DICT),CHILD_ID)
    sys.stdout.flush() 

    read_all_VCF_vars(mom_vcf_file,ALL_MOM_DICT)
    print "Found %s unique VCF variants for MOM (%s)" % (len(ALL_MOM_DICT),MOM_ID)
    sys.stdout.flush()

    read_all_VCF_vars(dad_vcf_file,ALL_DAD_DICT)
    print "Found %s unique VCF variants for DAD (%s)" % (len(ALL_DAD_DICT),DAD_ID)
    sys.stdout.flush()


    # now go over all child variants and set the inheritance
    num_child_vars_assigned = 0
    for key,v in ALL_CHILD_DICT.iteritems():
        if (key in ALL_MOM_DICT) and (key in ALL_DAD_DICT):
            CHILD_INHER_DICT[key] = 'Biparental'
            num_child_vars_assigned += 1
        elif key in ALL_MOM_DICT:
            CHILD_INHER_DICT[key] = 'Maternally inherited, constitutive in mother'
            num_child_vars_assigned += 1
        elif key in ALL_DAD_DICT:
            CHILD_INHER_DICT[key] = 'Paternally inherited, constitutive in father'
            num_child_vars_assigned += 1
        else:
            CHILD_INHER_DICT[key] = 'Unknown'

    assigned_ratio = (float(num_child_vars_assigned)/float(len(ALL_CHILD_DICT)))*100.0

    print "%s of the %s unique VCF variants (%.2f%%) for CHILD (%s) has been assigned to parents" % (num_child_vars_assigned,len(ALL_CHILD_DICT),assigned_ratio,CHILD_ID)
    sys.stdout.flush()






    # setup the DECIPHER output file
    out_dec_file = '%s/%s_DEC_FLT.csv' % (dec_dir,CHILD_ID)		################################
    out_han = open(out_dec_file,'w')
    out_han.write('Internal reference number or ID,Chromosome,Start,Genome assembly,Reference allele,Alternate allele,Transcript,Gene name,Intergenic,Chromosomal sex,Other rearrangements/aneuploidy,Open-access consent,Age at last clinical assessment,Prenatal age in weeks,Note,Inheritance,Pathogenicity,Phenotypes,HGVS code,Genotype,Responsible contact\n')


    # setup the IGV snapshot file
    out_igv_file = '%s/IGV/%s.snapshot.FLT.txt' % (dec_dir,CHILD_ID)	#################################
    out_igv_han = open(out_igv_file,'w')
    out_igv_han.write('new\n')
    out_igv_han.write('genome hg38\n')
    out_igv_han.write('mkdir -p "%s"\n' % (fam_igv_dir))
    out_igv_han.write('new\n')

    child_bam = '%s/%s/%s-ready.bam' % (fam_bam_dir,CHILD_ID,CHILD_ID)
    mom_bam = '%s/%s/%s-ready.bam' % (fam_bam_dir,MOM_ID,MOM_ID)
    dad_bam = '%s/%s/%s-ready.bam' % (fam_bam_dir,DAD_ID,DAD_ID)
    out_igv_han.write('load %s\n' % (child_bam))
    out_igv_han.write('load %s\n' % (mom_bam))
    out_igv_han.write('load %s\n' % (dad_bam))

    out_igv_han.write('snapshotDirectory "%s"\n' % (fam_igv_dir))
    out_igv_han.write('\n')
     


    # now read the child VCF, check if the variant in the G2P/VASE output, if yes:
    # set the value in the dict to 1
    # print out to to output file


    in_cntr = 0
    out_cntr = 0

    child_vcf_file = '%s/%s_%s.ready.%s.vcf.gz' % (vcf_dir,plate_id,fam_id,CHILD_ID)
    in_han = gzip.open(child_vcf_file,'r')


    for line in in_han:
        if line.startswith('#'):
            continue

        in_cntr += 1

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]

        VCF_VAR = data[9]

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)
        inher_stat = CHILD_INHER_DICT[key]



        ##############################################################
        # different processing depending on being a SNP, INS, or DEL #
        ##############################################################
         
        if len(ref) == len(alt):			# SNP
            if len(ref) != 1:
                print "ERROR: MNPs are not supported!"
                print line
                raise SystemExit

            key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if key_to_match in VASE_DICT:
                VASE_DICT[key_to_match] = 1
                is_denovo = True
            if key_to_match in G2P_DICT:
                G2P_DICT[key_to_match] = 1
                trans = G2P_DATA[key_to_match][0]
                gene = G2P_DATA[key_to_match][1]
                GT = G2P_DATA[key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown': 
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit 

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit

                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':			# a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':		# a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit  

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene) 
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]
             
                if trans in TRANS_DICT:				# if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')


            

        elif len(ref) > len(alt):			# DEL
            if len(alt) != 1:
                print "ERROR with a deletion"
                print line
                raise SystemExit 

            G2P_key_to_match = '%s:%s:%s:-' % (chr,pos+1,ref[1:])
            VASE_key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if VASE_key_to_match in VASE_DICT:
                VASE_DICT[VASE_key_to_match] = 1
                is_denovo = True 
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown':
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit

                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')



        elif len(ref) < len(alt):                       # INS
            if len(ref) != 1:
                print "ERROR with an insertion"
                print line
                raise SystemExit

            G2P_key_to_match = '%s:%s:-:%s' % (chr,pos+1,alt[1:])
            VASE_key_to_match = '%s:%s:%s:%s' % (chr,pos,ref,alt)
            is_denovo = False
            if VASE_key_to_match in VASE_DICT:
                VASE_DICT[VASE_key_to_match] = 1
                is_denovo = True
            if G2P_key_to_match in G2P_DICT:
                G2P_DICT[G2P_key_to_match] = 1
                trans = G2P_DATA[G2P_key_to_match][0]
                gene = G2P_DATA[G2P_key_to_match][1]
                GT = G2P_DATA[G2P_key_to_match][2]

                if is_denovo:
                    if inher_stat == 'Unknown':
                        inher_stat = 'De novo constitutive'
                    else:
                        print "ERROR: %s is both VASE denovo and %s from VCF" % (key,inher_stat)
                        raise SystemExit

                if (chr != 'chrX') and (chr != 'chrY'):
                    if GT == 'HET':
                        genotype = 'Heterozygous'
                    elif GT == 'HOM':
                        genotype = 'Homozygous'
                    else:
                        print "ERROR: Cannot understand GT = %s" % (GT)
                        raise SystemExit
                elif (chr == 'chrX') or (chr == 'chrY'):
                    if DEC_CHILD_SEX == '46XX':                 # a girl
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                        elif GT == 'HOM':
                            genotype = 'Homozygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    elif DEC_CHILD_SEX == '46XY':               # a boy
                        if GT == 'HET':
                            genotype = 'Heterozygous'
                            print "   WARNING: HET variant on chrX/Y for a boy (%s): %s\t%s\t%s\t%s\t%s" % (CHILD_ID,chr,pos,ref,alt,VCF_VAR)
                        elif GT == 'HOM':
                            genotype = 'Hemizygous'
                        else:
                            print "ERROR: Cannot understand GT = %s" % (GT)
                            raise SystemExit
                    else:
                        print "ERROR: unknown sex for this proband = %s" % (DEC_CHILD_SEX)
                        raise SystemExit
                else:
                    print "ERROR: unknown chr"
                    print line
                    raise SystemExit


                # write to the DECIPHER file
                gene_id_idx = gene.find('(')
                if gene_id_idx == -1:
                    gene_id_idx = len(gene)
                gene_id = gene[0:gene_id_idx]
                int_ID = MAP_DICT[fam_id]

                if trans in TRANS_DICT:                         # if the transcriptID is to be replaced
                    safe_trans = TRANS_DICT[trans]
                else:
                    safe_trans = trans

                to_write = '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,,%s,,,,"%s",,,,%s,\n' % (int_ID,chr[3:],pos,ASSEMBLY,ref,alt,safe_trans,gene_id,INTERGENIC,DEC_CHILD_SEX,ACCESS,inher_stat,genotype)
                out_cntr += 1
                out_han.write(to_write)

                # write to the IGV file
                i_s = pos - SNAP_FLANK
                i_e = pos + SNAP_FLANK
                i_name = '%s_%s_%s_%s_%s.png' % (CHILD_ID,chr,pos,ref,alt)
                out_igv_han.write('goto %s:%s-%s\n' % (chr,i_s,i_e))
                out_igv_han.write('sort strand\n')
                out_igv_han.write('squish\n')
                out_igv_han.write('snapshot %s\n' % (i_name))
                out_igv_han.write('\n')


        else:
            print "Cannot establish the type of this VCF variant"
            print line
            raise SystemExit 

    in_han.close()
    out_han.close()
    out_igv_han.close()







    ### check if all G2P and VASE variants were found/matched in the proband's VCF
    found_all_G2P = True
    found_all_VASE = True

    for k,v in G2P_DICT.iteritems():
        if int(v) == 0:
            print k 
            found_all_G2P = False
            break

    for k,v in VASE_DICT.iteritems():
        if int(v) == 0:
            print k
            found_all_VASE = False
            break   

    if found_all_G2P:
        print "OK: Found all %s G2P variants in the proband's VCF file" % (len(G2P_DICT))
    else:
        print "ERROR: Could not find all G2P variants in the probands VCF file"
        raise SystemExit

    if found_all_VASE:
        print "OK: Found all %s VASE variants in the proband's VCF file" % (len(VASE_DICT))
    else:
        print "ERROR: Could not find all VASE variants in the probands VCF file"
        raise SystemExit

    ### check if all G2P variants are written out
    if out_cntr == NUM_UNIQ_G2P_VARS:
        print "OK: All G2P vars are recorded in the output DECIPHER file"
    else:
        print "ERROR: *NOT* all G2P vars are recorded in the G2P VCF file"


    print "Wrote %s variants in outfile = %s" % (out_cntr,out_dec_file)
    print "The batch snapshot file = %s" % (out_igv_file)
    sys.stdout.flush()









 

def read_all_VCF_vars(in_vcf_file,THIS_DICT):

    in_han = gzip.open(in_vcf_file,'r')
    for line in in_han:
        if line.startswith('#'):
            continue

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = int(data[1])
        ref = data[3]
        alt = data[4]


        # did the splitting and normalizing - should not have multiallelic variants
        if alt.find(',') != -1:
            print "ERROR: found multiallelic variant"
            print line
            raiseSystemExit

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)  
        if key not in THIS_DICT:
            THIS_DICT[key] = 1
        else:
            print "ERROR: duplicate key = %s in %s" % (key,in_vcf_file)
            raise SystemExit

    in_han.close()   







def read_VASE(in_file):

    global NUM_UNIQ_VASE_VARS

    in_han = open(in_file,'r')
    for line in in_han:
        # ignore header lines
        if line.startswith('#'):
            continue

        data = [x.strip() for x in line.strip().split('\t')]
        chr = data[0]
        pos = data[1]
        ref = data[3]
        alt = data[4] 

        key = '%s:%s:%s:%s' % (chr,pos,ref,alt)

        if key not in VASE_DICT:
            VASE_DICT[key] = 0
        else:
            print "ERROR: duplicate VASE variant key = %s" % (key)
            raise SystemExit

    in_han.close()
    NUM_UNIQ_VASE_VARS = len(VASE_DICT)
    print "Found %s unique VASE denovo variants for CHILD (%s)" % (NUM_UNIQ_VASE_VARS,CHILD_ID)
    sys.stdout.flush()


























def read_G2P(in_file):

    global NUM_UNIQ_G2P_VARS

    known_OBS_states = ['monoallelic','biallelic','hemizygous','x-linked dominant','x-linked over-dominance']


    # first, read the G2P variants on canonical transcripts for each of the family members
    CHILD_DICT = defaultdict(dict)	# 1st level key: OBS state; 2nd level key: chr:start:end:ref:alt; value: (ZYG,gene,trans)
    MOM_DICT = defaultdict(dict)	# 1st level key: OBS state; 2nd level key: chr:start:end:ref:alt; value: (ZYG,gene,trans)    
    DAD_DICT = defaultdict(dict)	# 1st level key: OBS state; 2nd level key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]

        # get the individual_id 
        sam_id = data[0]

        # ignore variants not on canonical transcripts
        is_canon = data[3]
        if is_canon != 'is_canonical':
            continue
        
        # split the variants based on the gene's OBS model of inheritance
        inher_model = data[4]
        aaa,OBS_state = inher_model.split('=')

        if OBS_state not in known_OBS_states:
            print "ERROR: unknown OBS state = %s in %s" % (OBS_state,in_file)
            raise SystemExit 

ameyner2's avatar
ameyner2 committed
        # get the gene name in format ENSG00000165899(C12orf64,OTOGL) or gene-MYT1L(MYT1L)
        gene_name = data[1]

ameyner2's avatar
ameyner2 committed
        # get the transcript name in format ENST00000238647 or gene-MYT1L(MYT1L)
        transcript = data[2]


        # this is a list of variants (n>=1) on a canonical transcript in a gene being considered under any OBS state
        var_list = [y.strip() for y in data[6].split(';')]
        for v in var_list:
            v_details = [z.strip() for z in v.split(':')]
            chr = v_details[0]
            start = int(v_details[1])
            end = int(v_details[2])
            ref = v_details[3]
            alt = v_details[4]
            GT = v_details[5]
            second_key = '%s:%s:%s:%s:%s' % (chr,start,end,ref,alt)


            if sam_id == CHILD_ID:
                # check for duplication
                if OBS_state not in CHILD_DICT:
ameyner2's avatar
ameyner2 committed
                    CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                elif second_key not in CHILD_DICT[OBS_state]:
ameyner2's avatar
ameyner2 committed
                    CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                else:		# already recorded this variant
                     		# if we have refseq recorded and this is ensembl --> replace
                    if not CHILD_DICT[OBS_state][second_key][1].startswith('ENSG'):		# recorded is refseq
                        if gene_name.startswith('ENSG'):					# this is ensembl
                            CHILD_DICT[OBS_state][second_key] = (GT,gene_name,transcript) 	# replace
                        else:									# this is refseq again, ignore
                            pass 
                    else:									# recorded is ensembl, ignore
                        pass 

            elif sam_id == MOM_ID:
                # check for duplication
                if OBS_state not in MOM_DICT:
ameyner2's avatar
ameyner2 committed
                    MOM_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                elif second_key not in MOM_DICT[OBS_state]:
ameyner2's avatar
ameyner2 committed
                    MOM_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                else:           # already recorded this variant
                                # if we have refseq recorded and this is ensembl --> replace
                    if not MOM_DICT[OBS_state][second_key][1].startswith('ENSG'):		# recorded is refseq
                        if gene_name.startswith('ENSG'):                                        # this is ensembl
                            MOM_DICT[OBS_state][second_key] = (GT,gene_name,transcript)		# replace
                        else:                                                                   # this is refseq again, ignore
                            pass
                    else:                                                                       # recorded is ensembl, ignore
                        pass

            elif sam_id == DAD_ID:
                # check for duplication
                if OBS_state not in DAD_DICT:
ameyner2's avatar
ameyner2 committed
                    DAD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                elif second_key not in DAD_DICT[OBS_state]:
ameyner2's avatar
ameyner2 committed
                    DAD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)
                else:           # already recorded this variant
                                # if we have refseq recorded and this is ensembl --> replace
                    if not DAD_DICT[OBS_state][second_key][1].startswith('ENSG'):               # recorded is refseq
                        if gene_name.startswith('ENSG'):                                        # this is ensembl
                            DAD_DICT[OBS_state][second_key] = (GT,gene_name,transcript)         # replace
                        else:                                                                   # this is refseq again, ignore
                            pass
                    else:                                                                       # recorded is ensembl, ignore
                        pass

            else:
                print "ERROR: cannot identify the person for this variant"
                print line
                raise SystemExit   

    in_han.close()


    ### print out the number of unique G2P variants in CHILD ###
    child_mono = 0
    child_bi = 0
    child_hemi = 0
    child_xld = 0
    child_xlod = 0

    if 'monoallelic' in CHILD_DICT:
        child_mono = len(CHILD_DICT['monoallelic'])
    if 'biallelic' in CHILD_DICT:
        child_bi = len(CHILD_DICT['biallelic'])
    if 'hemizygous' in CHILD_DICT:
        child_hemi = len(CHILD_DICT['hemizygous'])
    if 'x-linked dominant' in CHILD_DICT:
        child_xld = len(CHILD_DICT['x-linked dominant'])
    if 'x-linked over-dominance' in CHILD_DICT:
        child_xlod = len(CHILD_DICT['x-linked over-dominance'])

    print "CHILD (%s): number of unique G2P variants on canon transcript in the following OBS states" % (CHILD_ID)
    print "    monoallelic: %s" % (child_mono)
    print "    biallelic: %s" % (child_bi)
    print "    hemizygous: %s" % (child_hemi)
    print "    x-linked dominant: %s" % (child_xld)
    print "    x-linked over-dominance: %s" % (child_xlod)



    ### print out the number of unique G2P variants in MOM ###
    mom_mono = 0
    mom_bi = 0
    mom_hemi = 0
    mom_xld = 0
    mom_xlod = 0

    if 'monoallelic' in MOM_DICT:
        mom_mono = len(MOM_DICT['monoallelic'])
    if 'biallelic' in MOM_DICT:
        mom_bi = len(MOM_DICT['biallelic'])
    if 'hemizygous' in MOM_DICT:
        mom_hemi = len(MOM_DICT['hemizygous'])
    if 'x-linked dominant' in MOM_DICT:
        mom_xld = len(MOM_DICT['x-linked dominant'])
    if 'x-linked over-dominance' in MOM_DICT:
        mom_xlod = len(MOM_DICT['x-linked over-dominance'])

    print "MOM (%s): number of unique G2P variants on canon transcript in the following OBS states" % (MOM_ID)
    print "    monoallelic: %s" % (mom_mono)
    print "    biallelic: %s" % (mom_bi)
    print "    hemizygous: %s" % (mom_hemi)
    print "    x-linked dominant: %s" % (mom_xld)
    print "    x-linked over-dominance: %s" % (mom_xlod)



    ### print out the number of unique G2P variants in DAD ###
    dad_mono = 0
    dad_bi = 0
    dad_hemi = 0
    dad_xld = 0
    dad_xlod = 0

    if 'monoallelic' in DAD_DICT:
        dad_mono = len(DAD_DICT['monoallelic'])
    if 'biallelic' in DAD_DICT:
        dad_bi = len(DAD_DICT['biallelic'])
    if 'hemizygous' in DAD_DICT:
        dad_hemi = len(DAD_DICT['hemizygous'])
    if 'x-linked dominant' in DAD_DICT:
        dad_xld = len(DAD_DICT['x-linked dominant'])
    if 'x-linked over-dominance' in DAD_DICT:
        dad_xlod = len(DAD_DICT['x-linked over-dominance'])

    print "DAD (%s): number of unique G2P variants on canon transcript in the following OBS states" % (DAD_ID)
    print "    monoallelic: %s" % (dad_mono)
    print "    biallelic: %s" % (dad_bi)
    print "    hemizygous: %s" % (dad_hemi)
    print "    x-linked dominant: %s" % (dad_xld)
    print "    x-linked over-dominance: %s" % (dad_xlod)
    sys.stdout.flush()






    ###############################################################################################
    ####    DOM filtering                                                                      ####
    ####    if the gene has been considered under the dominant model (OBS == monoallelic)      ####
    ####    exclude child variants seen in UNAFFECTED mother/father, regardless of GT          ####
    ###############################################################################################


    print ""
    print "===   DOM filtering   ==="


    for key in CHILD_DICT['monoallelic']:	# this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['monoallelic'][key][0]
        CHILD_GENE = CHILD_DICT['monoallelic'][key][1]
        CHILD_TRANS = CHILD_DICT['monoallelic'][key][2]

        if (key in MOM_DICT['monoallelic']) and (MOM_STAT == "UNAFFECTED"):
            MOM_GT = MOM_DICT['monoallelic'][key][0]
            print "***[DOM model]*** Excluded CHILD var %s CHILD_GT = %s, MOM_GT = %s, MOM_STAT = %s" % (key,CHILD_GT,MOM_GT,MOM_STAT)
            continue

        if (key in DAD_DICT['monoallelic']) and (DAD_STAT == "UNAFFECTED"):
            DAD_GT = DAD_DICT['monoallelic'][key][0]
            print "***[DOM model]*** Excluded CHILD var %s CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GT,DAD_GT,DAD_STAT)
            continue


        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=monoallelic)

        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass


    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants in CHILD (%s) after considering MONOALLELIC genes" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()

    print ""












    ####################################################################################################################
    ####    X-linked filtering                                                                                      ####
    ####    under the x-linked model (OBS == hemizygous or x-linked dominant, but NOT x-linked over-dominance)      ####
    ####    exclude child HET variants if seen as HOM in UNAFFECTED father                                          ####
    ####################################################################################################################


    print ""
    print "===   X-linked filtering   ==="

    ################################
    ### process hemizygous genes ###
    ################################

    for key in CHILD_DICT['hemizygous']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['hemizygous'][key][0]
        CHILD_GENE = CHILD_DICT['hemizygous'][key][1]
        CHILD_TRANS = CHILD_DICT['hemizygous'][key][2]

        if CHILD_GT == 'HOM':							# do NOT filter HOM variants in proband (i.e., hemizygous in boy or HOM in girl)
            pass 
        else: 
            if (key in DAD_DICT['hemizygous']) and (DAD_STAT == "UNAFFECTED"):
                DAD_GT = DAD_DICT['hemizygous'][key][0]
                if DAD_GT == 'HOM':						# i.e., hemizygous variant in unaffected father
                    print "***[X-linked model (hemizygous)]*** Excluded CHILD var %s CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GT,DAD_GT,DAD_STAT)
                    continue

        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=hemizygous)
        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass



    #######################################
    ### process x-linked dominant genes ###
    #######################################

    for key in CHILD_DICT['x-linked dominant']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['x-linked dominant'][key][0]
        CHILD_GENE = CHILD_DICT['x-linked dominant'][key][1]
        CHILD_TRANS = CHILD_DICT['x-linked dominant'][key][2]

        if CHILD_GT == 'HOM':                                                   # do NOT filter HOM variants (i.e., hemizygous in boy or HOM in girl)
            pass