Skip to content
Snippets Groups Projects
NHS_WES_generate_DEC_IGV.py 54.3 KiB
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        else:
            if (key in DAD_DICT['x-linked dominant']) and (DAD_STAT == "UNAFFECTED"):
                DAD_GT = DAD_DICT['x-linked dominant'][key][0]
                if DAD_GT == 'HOM':                                             # i.e., x-linked dominant variant in unnafected father
                    print "***[X-linked model (x-linked dominant)]*** Excluded CHILD var %s CHILD_GT = %s, DAD_GT = %s, DAD_STAT = %s" % (key,CHILD_GT,DAD_GT,DAD_STAT)
                    continue

        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=x-linked dominant)
        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass


    ########################################################################
    ### process x-linked over-dominance  genes - no filtering to be done ###
    ########################################################################

    for key in CHILD_DICT['x-linked over-dominance']:       # this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)

        CHILD_GT = CHILD_DICT['x-linked over-dominance'][key][0]
        CHILD_GENE = CHILD_DICT['x-linked over-dominance'][key][1]
        CHILD_TRANS = CHILD_DICT['x-linked over-dominance'][key][2]

        # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
        chr,start,end,ref,alt = key.split(":")
        if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
            if len(ref) < len(alt):                                 # an INS
                orig_start = start
                orig_ref = ref
                orig_alt = alt
                start = orig_start
                ref = '-'
                alt = orig_alt[len(orig_ref):]
                print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
            else:                                                   # a DEL
                print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                print line
                raise SystemExit

        new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

        # record the data for CHILD G2P variants (for OBS=x-linked over-dominance)
        if new_key not in G2P_DICT:
            G2P_DICT[new_key] = 0
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass

        # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
        if new_key not in G2P_DATA:
            G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
        else:
            # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
            # raise SystemExit
            # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
            pass


    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants in CHILD (%s) after considering MONOALLELIC and X-LINKED genes" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()

    print ""





    ##############################################################################################################
    ####    BIALLELIC filtering                                                                               ####
    ####    under the biallelic model (OBS == biallelic) - consider ALL variants per gene                     ####
    ####    must all be HET in CHILD, GT in parent does not matter                                            ####
    ####    all of them must *clearly* come from only one of the parents (maternally/paternally + biparental) ####
    ####    and this parent must be unaffected                                                                ####
    ####    if all these: then exclude all child variants in this gene                                        ####
    ##############################################################################################################


    print ""
    print "===   BIALLELIC filtering   ==="


    GENE_KEY_GT = defaultdict(dict)		# for child - 1st level key: gene_name; 2nd level key: chr:start:end:ref:alt; value: (GT,trans)

    # process all variants in biallelic genes in child
    for key in CHILD_DICT['biallelic']:		# this the second key: chr:start:end:ref:alt; value: (ZYG,gene,trans)
        b_GT = CHILD_DICT['biallelic'][key][0]
        b_gene = CHILD_DICT['biallelic'][key][1]  
        b_trans = CHILD_DICT['biallelic'][key][2]
        GENE_KEY_GT[b_gene][key] = (b_GT,b_trans)

    # iterate over genes in GENE_KEY_GT
    for g in GENE_KEY_GT: 			# this is the biallelic gene name 
        all_HET = True

        # iterate over variants in this gene 
        for kx in GENE_KEY_GT[g]:		# this the second key: chr:start:end:ref:alt
###            if GENE_KEY_GT[g][kx] == 'HOM':	# there is a HOM variant in the child - NO filtering
            if GENE_KEY_GT[g][kx][0] == 'HOM':     # there is a HOM variant in the child - NO filtering
                all_HET = False
                break

        if all_HET:				# for this gene
        # all variants in this gene in the CHILD are HET, check if all come from a single unaffected parent
        # if yes, filter out and write a message to the log file
        # if not, to be added to G2P_DICT and G2P_DATA for further processing

            all_from_one_parent = True

            # iterate again over the variants in this gene
            VAR_SOURCE_LIST = {}		# key: chr:start:end:ref:alt in child; value: (NONE) or (MOM or DAD or BOTH and the parent is UNAFFECTED)

            for ky in GENE_KEY_GT[g]:		# this the second key: chr:start:end:ref:alt

                this_var_status = 'NONE'

                if ((ky in MOM_DICT['biallelic']) or (ky in MOM_DICT['monoallelic'])) and (MOM_STAT == "UNAFFECTED"):		
                    this_var_status = 'MOM'
                if ((ky in DAD_DICT['biallelic']) or (ky in DAD_DICT['monoallelic'])) and (DAD_STAT == "UNAFFECTED"):
                    if this_var_status == 'NONE': 
                        this_var_status = 'DAD'
                    elif this_var_status == 'MOM':
                        this_var_status = 'BOTH'

                VAR_SOURCE_LIST[ky] = this_var_status

            # have collected the parent source for all variants in this gene
            tot_num_vars = len(VAR_SOURCE_LIST)
            num_mom = 0
            num_dad = 0
            num_none = 0
            for kt,v in VAR_SOURCE_LIST.iteritems():
                if v == 'NONE':
                    num_none += 1
                elif v == 'MOM':
                    num_mom += 1
                elif v == 'DAD':
                    num_dad += 1
                elif v == 'BOTH':
                    num_mom += 1 
                    num_dad += 1
                else: 
                    print "ERROR: cannot understand the source parent = %s" % (v)
                    raise SystemExit 

            if num_none > 0:
                all_from_one_parent = False 
            elif num_mom < tot_num_vars and num_dad < tot_num_vars:
                all_from_one_parent = False  

            # if all variants in the child in this gene are found in single unaffected parent - filter out 
            if all_from_one_parent:
                for kz in GENE_KEY_GT[g]:
                    print "***[Biallelic model]*** Excluded CHILD HET var %s in gene = %s, found in = %s, PARENT_STAT = UNAFFECTED" % (kz,g,VAR_SOURCE_LIST[kz])
                continue

        # end processing all HET variants in the proband - if all from single unaffected parent they have been excluded, message to the log written
        # and gone to evaluating the next biallelic gene in the child

        # if here
        # - either not all CHILD variants in this gene are not HET, or
        # - not all of them can be traced to a single unaffected parent
        # --> add to be processed

        # here we are at gene level, must iterate over all variants in this gene 
        # iterate over variants in this gene
        for kkk in GENE_KEY_GT[g]:                # this the second key: chr:start:end:ref:alt
            
            CHILD_GT = CHILD_DICT['biallelic'][kkk][0]
            CHILD_GENE = CHILD_DICT['biallelic'][kkk][1]
            CHILD_TRANS = CHILD_DICT['biallelic'][kkk][2]

            # if a non-normalized INDEL in child G2P - must adjust (should not happen really, we split, normalized and left-aligned the family VCF before sending it to VEP+G2P)
            chr,start,end,ref,alt = kkk.split(":")
            if len(ref) > 1 and len(alt) > 1:                           # an INDEL - not normalized
                if len(ref) < len(alt):                                 # an INS
                    orig_start = start
                    orig_ref = ref
                    orig_alt = alt
                    start = orig_start
                    ref = '-'
                    alt = orig_alt[len(orig_ref):]
                    print "    WARNING: original INS = %s:%s:%s:%s:%s --> replaced with INS = %s:%s:%s:%s" % (chr,orig_start,end,orig_ref,orig_alt,chr,start,ref,alt)
                else:                                                   # a DEL
                    print "ERROR: At the momemnt, cannot deal with this non-normalized deletion"
                    print line
                    raise SystemExit

            new_key = '%s:%s:%s:%s' % (chr,start,ref,alt)

            # record the data for CHILD G2P variants (for OBS=biallelic)
            if new_key not in G2P_DICT:
                G2P_DICT[new_key] = 0
            else:
                # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass

            # and record the required data (CHILD_TRANS,CHILD_GENE,CHILD_GT) in G2P_DATA
            if new_key not in G2P_DATA:
                G2P_DATA[new_key] = (CHILD_TRANS,CHILD_GENE,CHILD_GT)
            else:
                # print "ERROR: duplicate G2P variant new_key = %s" % (new_key)
                # raise SystemExit
                # this will happen if a gene is e.g. hemizygous,x-linked dominant - there will be two separate lines in the output for each req
                pass

    NUM_UNIQ_G2P_VARS = len(G2P_DICT)
    print "Found %s unique G2P variants in CHILD (%s) after considering MONOALLELIC, X-LINKED and BIALLELIC genes" % (NUM_UNIQ_G2P_VARS,CHILD_ID)
    sys.stdout.flush()
    print ""
    print ""













def read_ped(in_file):

    global CHILD_ID
    global CHILD_SEX
    global DEC_CHILD_SEX
    global MOM_ID
    global MOM_STAT 
    global DAD_ID
    global DAD_STAT

    CHILD_ID = 0
    CHILD_SEX = 0
    MOM_ID = 0
    MOM_STAT = 0
    DAD_ID = 0
    DAD_STAT = 0

    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        if data[2] != '0' and data[3] != '0':			# this is the child in the trio
            if CHILD_ID == 0:
                CHILD_ID = data[1]
            else:						# seen another child
                print "ERROR: already have seen a child (possibly a quad) - cannot handle at the moment"  
                raise SystemExit

            if DAD_ID == 0: 
                DAD_ID = data[2] 
            else:
                if data[2] != DAD_ID:
                    print "ERROR: DAD_ID mismatch - from child line dad_id = %s, from dad line dad_id = %s" % (data[2],DAD_ID)
                    raise SystemExit   
            if MOM_ID == 0:
                MOM_ID = data[3]
            else:
                if data[3] != MOM_ID:
                    print "ERROR: MOM_ID mismatch - from child line mom_id = %s, from mom line mom_id = %s" % (data[3],MOM_ID)
                    raise SystemExit

            CHILD_SEX = int(data[4])
            if CHILD_SEX == 1:		# boy
                DEC_CHILD_SEX = '46XY'
            elif CHILD_SEX == 2:	# girl
                DEC_CHILD_SEX = '46XX'
            else:
                print "ERROR: proband sex unknown"
                print line
                raise SystemExit

            if int(data[5]) != 2:
                print "ERROR: child not affected"
                print line
                raise SystemExit  


        elif int(data[2]) == 0 and int(data[3]) == 0:		# this is a parent record
            if int(data[4]) == 1:				# this is the dad
                if int(data[5]) == 1:
                    DAD_STAT = "UNAFFECTED"
                elif int(data[5]) == 2:
                    DAD_STAT = "AFFECTED" 
                else:  
                    print "ERROR: cannot establish the dad's status"
                    print line 
                    raise SystemExit

                if DAD_ID == 0:
                    DAD_ID = data[1]
                else:
                    if data[1] != DAD_ID:
                        print "ERROR: DAD_ID mismatch - from dad line dad_id = %s, from child line dad_id = %s" % (data[1],DAD_ID)
                        raise SystemExit
                
            if int(data[4]) == 2:                               # this is the mom
                if int(data[5]) == 1:
                    MOM_STAT = "UNAFFECTED"
                elif int(data[5]) == 2:
                    MOM_STAT = "AFFECTED"
                else:
                    print "ERROR: cannot establish mom's status"
                    print line
                    raise SystemExit

                if MOM_ID == 0:
                    MOM_ID = data[1]
                else:
                    if data[1] != MOM_ID:
                        print "ERROR: MOM_ID mismatch - from mom line mom_id = %s, from child line mom_id = %s" % (data[1],MOM_ID)
                        raise SystemExit
        else:
            print "ERROR: problematic PED line"
            print line
            raise SystemExit 






def read_map_file(in_file):
    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        dec_id = data[0]
        int_id = data[1]
        if dec_id not in MAP_DICT:
            MAP_DICT[dec_id] = int_id
        else:
            print "ERROR: duplicate DECIPHER/family ID = %s" % (dec_id)
            raise SystemExit
    in_han.close()  




def read_trans_map(in_file):
    in_han = open(in_file,'r')
    for line in in_han:
        data = [x.strip() for x in line.strip().split('\t')]
        old_trans_id = data[0]
        new_trans_id = data[1]
        if old_trans_id not in TRANS_DICT:
            TRANS_DICT[old_trans_id] = new_trans_id
        else:
            print "ERROR: duplicate old transcript ID = %s" % (old_trans_id)
            raise SystemExit
    in_han.close()






if __name__ == '__main__':
    if len(sys.argv) == 12:
        go(sys.argv[1],sys.argv[2],sys.argv[3],sys.argv[4],sys.argv[5],sys.argv[6],sys.argv[7],sys.argv[8],sys.argv[9],sys.argv[10],sys.argv[11])
    else:
        print "Suggested use: time python /home/u035/u035/shared/scripts/NHS_WES_generate_DEC_IGV.py \
        dec_map_file,trans_map_file,ped_file,in_g2p_file,in_vase_file,fam_igv_dir,vcf_dir,plate_id,fam_id,dec_dir,fam_bam_dir"
        raise SystemExit