Newer
Older
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --mem=16GB
#SBATCH --time=24:00:00
#SBATCH --job-name=process_quad
#SBATCH --output=process_quad.%A_%a.out
#SBATCH --error=process_quad.%A_%a.err
# setup PATH
export PATH=$PATH:/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin:/home/u035/u035/shared/software/bcbio/anaconda/bin
export PERL5LIB=$PERL5LIB:/home/u035/u035/shared/software/bcbio/anaconda/lib/site_perl/5.26.2
### folder structure for the downstream analysis - created by trio_setup.sh, done previously by the stanard trio-based pipeline ###
BASE=/home/u035/u035/shared/analysis/work
WORK_DIR=$BASE/${PROJECT_ID}
VCF_DIR=${WORK_DIR}/VCF
PED_DIR=${WORK_DIR}/PED
LOG_DIR=${WORK_DIR}/LOG
G2P_DIR=${WORK_DIR}/G2P
VASE_DIR=${WORK_DIR}/VASE
COV_DIR=${WORK_DIR}/COV
DEC_DIR=${WORK_DIR}/DECIPHER
IGV_DIR=${DEC_DIR}/IGV
CNV_DIR=${WORK_DIR}/CNV
BAMOUT_DIR=${WORK_DIR}/BAMOUT
SCRIPTS_DIR=/home/u035/u035/shared/scripts
# other files to be used
TARGETS=/home/u035/u035/shared/resources/G2P/DDG2P.20220113.plus15bp.merged.bed # OK
CLINVAR=/home/u035/u035/shared/resources/G2P/DDG2P.20220113.clinvar.20220109.plus15bp.txt # OK
BLACKLIST=/home/u035/u035/shared/resources/blacklist/current_blacklist.txt # OK
TRANS_MAP=/home/u035/u035/shared/resources/trans_map/current_trans_map.txt # OK
REC_SNP=/home/u035/u035/shared/resources/reccurent/current_reccurent.bed # OK, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116826/, Extended Data Table 1
SAMTOOLS=/home/u035/u035/shared/software/bcbio/anaconda/bin/samtools
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
BCFTOOLS=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/bcftools
BGZIP=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/bgzip
TABIX=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/tabix
VT=/home/u035/u035/shared/software/bcbio/anaconda/bin/vt
VASE=/home/u035/u035/shared/software/bcbio/anaconda/bin/vase
GATK4=/home/u035/u035/shared/software/bcbio/anaconda/bin/gatk # points to ../share/gatk4-4.2.1.0-0/gatk
GATK3=/home/u035/u035/shared/software/GenomeAnalysisTK-3.8/GenomeAnalysisTK.jar
PYTHON3=/home/u035/u035/shared/software/bcbio/anaconda/bin/python3 # points to python3.6
PYTHON2=/home/u035/u035/shared/software/bcbio/anaconda/envs/python2/bin/python2.7
VEP="/home/u035/u035/shared/software/bcbio/anaconda/bin/perl /home/u035/u035/shared/software/bcbio/anaconda/bin/vep" # points to ../share/ensembl-vep-100.4-0/vep
REFERENCE_GENOME=/home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/seq/hg38.fa
echo "SOURCE_DIR = ${SOURCE_DIR}" # the general path to the source BAM files (VCF and PED already copied) i.e. /home/u035/u035/shared/results
echo "BATCH_ID = ${BATCH_ID}" # the ID of the batch being processed e.g. 19650_Ansari_Morad
echo "BATCH_NUM = ${BATCH_NUM}" # the numerical part of the BATCH_ID e.g. 19650
echo "PLATE_ID = ${PLATE_ID}" # the PCR plate ID of the batch being currently processed, e.g. 19285
echo "PROJECT_ID = ${PROJECT_ID}" # this the the folder (${BASE}/${PROJECT_ID}) where the downstream analysis will be done
echo "VERSION_N = ${VERSION_N}" # the version of the alignment and genotyping analysis
echo "FAMILY_ID = ${FAMILY_ID}" # the family ID of this family with affected probands
echo "KID_1_ID = ${KID_1_ID}" # the ID of the first affected proband, in the format INDI_ID
echo "KID_2_ID = ${KID_2_ID}" # the ID of the second affected proband
echo "PAR_1_ID = ${PAR_1_ID}" # the ID of the first unaffected parent, in the format INDI_ID
echo "PAR_2_ID = ${PAR_2_ID}" # the ID of the second unaffected parent
echo "DECIPHER_ID = ${DECIPHER_ID}" # the DECIPHER_ID for this family
# change to the LOG folder
cd ${LOG_DIR}
#########################################################################################################
### check the PED file to make sure exactly 2 affected probands with exactly 2 unaffected parents ###
#########################################################################################################
echo ""
echo ""
echo "checking the ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped file..."
time ${PYTHON2} ${SCRIPTS_DIR}/check_quad_PED.py ${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
# check if the PED file checks were successful (python exit code = 0), if not exit the bash script
ret=$?
if [ $ret -ne 0 ]; then
echo "...it appears that the PED file does not corresponds to a quad family !"
echo "ERROR: Aborting the analysis"
exit
fi
echo ""
echo ""
##################################################################################################
##################################################################################################
### split the quad to two trios, one for each child and process as a standard TRIO family ###
##################################################################################################
##################################################################################################
echo ""
echo ""
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} as two trios +++"
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""
# Create an array of kid ids to loop
KID_IDS=()
KID_IDS+=(${KID_1_ID})
KID_IDS+=(${KID_2_ID})
for KID_ID in ${KID_IDS[@]}; do
echo ""
echo "++++++++++++++++++++++++++++++++++++"
echo "processing trio for child = $KID_ID"
echo "++++++++++++++++++++++++++++++++++++"
echo ""
#############################################################
# generate this trio's PED file #
# named: ${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped #
#############################################################
quad_ped_file=${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
time ${PYTHON2} ${SCRIPTS_DIR}/generate_trio_PED_from_quad.py ${PED_DIR} ${quad_ped_file} ${KID_ID} ${PAR_1_ID} ${PAR_2_ID}
#############################################################################
# generate this trio's VCF file #
# named: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz #
#############################################################################
quad_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz
trio_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz
# tabix index the quad file just in case
time ${TABIX} -p vcf ${quad_vcf_file}
# extract a trio VCF for this kid
time java -Xmx24g -jar ${GATK3} -T SelectVariants \
-R ${REFERENCE_GENOME} \
-V ${quad_vcf_file} \
-sn ${KID_ID}_${FAMILY_ID} \
-sn ${PAR_1_ID}_${FAMILY_ID} \
-sn ${PAR_2_ID}_${FAMILY_ID} \
-jdk_deflater \
-jdk_inflater \
-o ${trio_vcf_file} \
-env
##################################################################################
### DNU and clean the the family VCF ###
### format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz ###
##################################################################################
echo ""
echo ""
echo "Performing DNU and cleaning of the ${PLATE_ID}_${FAMILY_ID}_${KID_ID}'s VCF file..."
time ${VT} decompose -s ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz
time ${VT} normalize ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz -r ${REFERENCE_GENOME} -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz
time ${VT} uniq ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz
# remove sites with AC=0
time ${BCFTOOLS} view --min-ac=1 --no-update ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf
# reset GT to no-call if num_ALT < num_ALT_THERSH or VAF < VAF_THRESH and GT != 0/0
# exlude variants from the blacklist (matching on chr,pos,ref,alt)
time ${PYTHON2} ${SCRIPTS_DIR}/filter_LQ_GT.py ${BLACKLIST} ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf
# bgzip and tabix it
time cat ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf | ${BGZIP} > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
time ${TABIX} -p vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
# delete intermediate files - keep them for now for debugging reasons
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}-gatk-haplotype-annotated.vcf.gz
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.decomp.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.norm.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.DNU.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.AC0.vcf
# to avoid bgzip pipe broken annoying, but not problematic message - skip the next step, the file will be used by G2P as IN_FILE and will be deleted last
# rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DNU, AC=0, num_ALT & VAF & blacklist cleaning and of the ${PLATE_ID}_${FAMILY_ID}_${KID_ID}'s VCF file: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
###################################################################
### run G2P for this trio VCF (DD genes) ###
### format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf ###
###################################################################
echo "Performing G2P analysis (DD genes)for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}..."
echo "Using ${TARGETS}"
IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.clean.vcf
G2P_LOG_DIR=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_LOG_DIR
mkdir ${G2P_LOG_DIR}
TXT_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.txt
HTML_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.html
VCF_KEYS='gnomADe_r2.1.1_GRCh38|gnomADg_r3.1.1_GRCh38'
time ${VEP} \
-i ${IN_FILE} \
--output_file ${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_inter_out.txt \
--force_overwrite \
--assembly GRCh38 \
--fasta ${REFERENCE_GENOME} \
--offline \
--merged \
--use_given_ref \
--cache --cache_version 100 \
--dir_cache /home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/vep \
--individual all \
--transcript_filter "gene_symbol in /home/u035/u035/shared/resources/G2P/genes_in_DDG2P.20220113.txt" \
--dir_plugins /home/u035/u035/shared/software/bcbio/anaconda/share/ensembl-vep-100.4-0 \
--plugin G2P,file='/home/u035/u035/shared/resources/G2P/DDG2P.20220113.csv',af_from_vcf=1,confidence_levels='definitive&strong',af_from_vcf_keys=${VCF_KEYS},log_dir=${G2P_LOG_DIR},txt_report=${TXT_OUT},html_report=${HTML_OUT}
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "G2P analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
###################################################################
### run VASE for this trio VCF (de novo) ###
### format: ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz ###
###################################################################
echo "Performing de novo analysis with VASE for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID} ..."
IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
OUT_FILE=${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.denovo.vcf
PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped
time ${VASE} \
-i ${IN_FILE} \
-o ${OUT_FILE} \
--log_progress \
--prog_interval 100000 \
--freq 0.0001 \
--gq 30 --dp 10 \
--het_ab 0.3 \
--max_alt_alleles 1 \
--csq all \
--biotypes all \
--control_gq 15 --control_dp 5 \
--control_het_ab 0.01 \
--control_max_ref_ab 0.05 \
--de_novo \
--ped ${PED_FILE}
# do some filtering on the denovo VCFs - exclude variants not on the 24 chr, as well as variants in LCR and telomere/centromere regions
### actually, ignore the filtering of variants in LCR and telomere/centromere regions --> more variants with “Unknown” status may be classified as “denovo” if enough support
cd ${VASE_DIR}
# index the denovo VCF
time ${GATK4} IndexFeatureFile -I ${OUT_FILE}
# select only variants on the 24 chromosomes
time ${GATK4} SelectVariants -R ${REFERENCE_GENOME} -V ${OUT_FILE} -O ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf -L /home/u035/u035/shared/resources/24_chr.list --exclude-non-variants
# sort the VCF (maybe not needed?, but just in case, and it is quick)
rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
grep '^#' ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf > ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf \
&& grep -v '^#' ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf | LC_ALL=C sort -t $'\t' -k1,1V -k2,2n >> ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
# index the sorted VCF
time ${GATK4} IndexFeatureFile -I ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
# split multi-allelic sites [by -m -any]
# left-alignment and normalization [by adding the -f]
file=${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf
echo "$file"
${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Ov -o ${file/.strict.24chr.sort.denovo.vcf/.ready.denovo.vcf} $file
# clean intermediate denovo files
rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.denovo.vcf*
rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.denovo.vcf*
rm ${PLATE_ID}_${FAMILY_ID}_${KID_ID}.strict.24chr.sort.denovo.vcf*
# change back to the LOG folder
cd ${LOG_DIR}
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "De novo analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_${KID_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
#################################################################################################################################################
### run coverage for this proband (DD genes) ###
### format: ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}/${PROBAND_ID}_${FAMILY_ID}-ready.bam ###
#################################################################################################################################################
echo "Performing coverage analysis for PROBAND_ID = ${KID_ID} ...."
# make sure we are reading the data from the exact batch & plate ID & version N
BAM_FILE=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}-ready.bam
OUT_FILE=${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15
time java -Xmx8g -jar ${GATK3} -T DepthOfCoverage -R ${REFERENCE_GENOME} -o ${OUT_FILE} -I ${BAM_FILE} -L ${TARGETS} \
--omitDepthOutputAtEachBase \
--minBaseQuality 20 \
--minMappingQuality 20 \
-ct 20 \
-jdk_deflater \
-jdk_inflater \
--allow_potentially_misencoded_quality_scores
echo ""
echo ""
echo "----------------------------------------------------------------------------------------------------"
echo "percentage of DD exons (+/-15bp) covered at least 20x in PROBAND_ID = ${KID_ID} ..."
cat ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.sample_summary | awk '{print $7}'
echo "----------------------------------------------------------------------------------------------------"
# now compute the coverage per DD exon (+/-15bp) interval, adding the number of P/LP ClinVar variants (assertion criteria provided) in each interval
time ${PYTHON2} ${SCRIPTS_DIR}/get_cov_output.py ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.sample_interval_summary ${CLINVAR} ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.COV.txt
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "Coverage analysis of PROBAND_ID = ${KID_ID}_${FAMILY_ID}: done "
echo " Coverage file = ${COV_DIR}/${KID_ID}_${FAMILY_ID}.DD15.COV.txt"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
################################################################################################
# check the coverage per each of the reccurent de novo SNPs (padded with 15bp both directions) #
################################################################################################
echo "Performing recurrent coverage analysis for PROBAND_ID = ${KID_ID}_${FAMILY_ID} ..."
# we have identified the name of the proband's BAM file above (BAM_FILE), reuse it
# set the name of the file containing info about the coverage of the recurrent SNPs
REC_OUT_FILE=${COV_DIR}/${KID_ID}_${FAMILY_ID}.REC_SNP_COV.txt
while IFS=$'\t' read -ra var; do
gene="${var[0]}"
chr="${var[1]}"
pos="${var[2]}"
lo=$(expr $pos - 15)
hi=$(expr $pos + 15)
reg="$lo-$hi"
echo "============================================="
echo "$gene : recurrent variant at $chr:$pos"
echo "exploring coverage at $chr:$reg"
echo "---------------------------------------------"
echo "precisely at the position"
${SAMTOOLS} depth -aa -Q 20 -r $chr:$reg ${BAM_FILE} | grep "$pos"
echo "---------------------------------------------"
echo "average in the +/- 15bp region"
${SAMTOOLS} depth -aa -Q 20 -r $chr:$reg ${BAM_FILE} | awk '{sum+=$3} END { print "Average = ",sum/NR}'
echo "---------------------------------------------"
echo "detailed in the +/- 15bp region"
${SAMTOOLS} depth -aa -Q 20 -r $chr:$reg ${BAM_FILE}
done < ${REC_SNP} > ${REC_OUT_FILE}
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "Coverage analysis of recurring SNPs for PROBAND_ID = ${KID_ID}_${FAMILY_ID}: done "
echo " Coverage file = ${REC_OUT_FILE}"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
#############################################################################################
### generate the DECIPHER file for this proband ###
### ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz - the cleaned family VCF ###
### ${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.denovo.vcf - the VASE file ###
### ${TRANS_MAP} - the current transcript mapping file ###
#############################################################################################
echo "Generating the DECIPHER file for PROBAND_ID = ${KID_ID}_${FAMILY_ID} ..."
# first, split the family VCF to individual VCFs
# -c1: minimum allele count (INFO/AC) of sites to be printed
# split multi-allelic sites (by -m -any)
# left-alignment and normalization (by adding the -f)
file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.vcf.gz
echo "splitting $file"
for indi in `${BCFTOOLS} query -l $file`; do
${BCFTOOLS} view -c1 -Oz -s $indi -o ${file/.vcf*/.$indi.rough.vcf.gz} $file
${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Oz -o ${file/.vcf*/.$indi.vcf.gz} ${file/.vcf*/.$indi.rough.vcf.gz}
rm ${file/.vcf*/.$indi.rough.vcf.gz}
done
# VASE file - already split, left-aligned and normalized
# create the names of the needed files
PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ped
IN_G2P_FILE=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}_LOG_DIR/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.report.txt
IN_VASE_FILE=${VASE_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}.ready.denovo.vcf
FAM_IGV_DIR=${IGV_DIR}/${PLATE_ID}_${FAMILY_ID}_${KID_ID}
FAM_BAM_DIR=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}
## call the python scrpit
time ${PYTHON2} ${SCRIPTS_DIR}/generate_DEC_IGV_trio_scripts_from_quad.py \
${DECIPHER_ID} \
${TRANS_MAP} \
${PED_FILE} \
${IN_G2P_FILE} \
${IN_VASE_FILE} \
${FAM_IGV_DIR} \
${VCF_DIR} \
${PLATE_ID} \
${FAMILY_ID} \
${DEC_DIR} \
${FAM_BAM_DIR} \
${KID_ID}
## using the DECIPHER bulk upload file v9 --> generate the DECIPHER bulk upload file v10
echo "...Generating v10 Decipher bulk upload file for proband = ${KID_ID}, family_id = ${FAMILY_ID} ..."
time ${PYTHON3} ${SCRIPTS_DIR}/convert_DEC_to_v10.py ${DEC_DIR} ${KID_ID}_${FAMILY_ID}
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DECIPHER analysis of PROBAND_ID = ${KID_ID}_${FAMILY_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
#rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}.clean.vcf
##############################################################################################
### for each variant in the DECIPHER upload file ###
### generate a IGV snapshot based on the realigned BAM used by GATK for calling variants ###
### first, generate BAMOUTs for each variant (to be stored in the BAMOUT folder) ###
### then, generate a batch script for IGV to produce the snapshots based on the BAMOUTs ###
##############################################################################################
# we have so far: FAMILY_ID and KID_ID
echo "...Generating BAMOUT files for the ${FAMILY_ID} family, proband = ${KID_ID} ..."
echo "...KID_ID = ${KID_ID}, PAR_1_ID = ${PAR_1_ID}, PAR_2_ID = ${PAR_2_ID} "
# gather the trio BAM files
kid_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}/${KID_ID}_${FAMILY_ID}-ready.bam
par_1_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${PAR_1_ID}_${FAMILY_ID}/${PAR_1_ID}_${FAMILY_ID}-ready.bam
par_2_bam=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${PAR_2_ID}_${FAMILY_ID}/${PAR_2_ID}_${FAMILY_ID}-ready.bam
echo "...kid_bam = ${kid_bam}..."
echo "...par_1_bam = ${par_1_bam}..."
echo "...par_2_bam = ${par_2_bam}..."
# gather the variants in the DECIPHER file for which to generate bamouts
# chr is the second column - need to add the 'chr' prefix
# pos is the third column
# the first line is a header line, starting with 'Internal reference number or ID'
# file called: ${DEC_DIR}/<proband_id>_<fam_id>_DEC_FLT.csv
# and for each run GATK to generate the bamout files
# to be stored in ${BAMOUT_DIR}/${FAMILY_ID}
mkdir ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}
var_file=${DEC_DIR}/${KID_ID}_${FAMILY_ID}_DEC_FLT.csv
echo "... reading ${var_file} to generate the bamouts..."
grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
echo "$line"
IFS=, read -ra ary <<<"$line"
chr=${ary[1]}
pos=${ary[2]}
ref=${ary[4]}
alt=${ary[5]}
echo " --> chr = $chr, pos = $pos, ref = ${ref}, alt = ${alt}"
# generate the bamout file
echo "...doing the bamout"
echo " time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} --input ${kid_bam} --input ${par_1_bam} --input ${par_2_bam} -L chr${chr}:${pos} --interval-padding 500"
echo " --active-probability-threshold 0.000 -ploidy 2"
echo " --output ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam"
time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} --input ${kid_bam} --input ${par_1_bam} --input ${par_2_bam} -L chr${chr}:${pos} --interval-padding 500 \
--active-probability-threshold 0.000 -ploidy 2 \
--output ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam
done
#################################################################
# write the IGV batch file for this family based on the bamouts #
# to be stored as /scratch/u035/u035/shared/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${KID_ID}_${FAMILY_ID}.snapshot.txt #
#################################################################
snap_file=/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${KID_ID}_${FAMILY_ID}.snapshot.txt
# check if previous version exist, if so - delete it
if [ -f "${snap_file}" ]; then
echo "previous version of ${snap_file} exist --> deleted"
rm ${snap_file}
fi
# write the header for the IGV batch file
echo "new" >> ${snap_file}
echo "genome hg38" >> ${snap_file}
echo "snapshotDirectory \"/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/${PLATE_ID}_${FAMILY_ID}_${KID_ID}\"" >> ${snap_file}
echo "" >> ${snap_file}
# now, go again over the variants in the DECIPHER file and generate one snapshot file for all the variants
var_file=${DEC_DIR}/${KID_ID}_${FAMILY_ID}_DEC_FLT.csv
echo "... reading ${var_file} to generate the IGV batch file using the bamouts..."
grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
IFS=, read -ra ary <<<"$line"
chr=${ary[1]}
pos=${ary[2]}
ref=${ary[4]}
alt=${ary[5]}
left=$((${pos}-25))
right=$((${pos}+25))
echo "new" >> ${snap_file}
echo "load ${BAMOUT_DIR}/${FAMILY_ID}_${KID_ID}/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam" >> ${snap_file}
echo "preference SAM.SHADE_BASE_QUALITY true" >> ${snap_file}
echo "goto chr${chr}:${left}-${right}" >> ${snap_file}
echo "group SAMPLE" >> ${snap_file}
echo "sort base" >> ${snap_file}
echo "squish" >> ${snap_file}
echo "snapshot bamout_${KID_ID}_${FAMILY_ID}_chr${chr}_${pos}_${ref}_${alt}.png" >> ${snap_file}
echo "" >> ${snap_file}
echo "" >> ${snap_file}
done
echo "Generating of the IGV batch files based on bamouts - done!"
echo "snap_file = ${snap_file}"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Variant prioritization of trio ${FAMILY_ID} with ${KID_ID} completed +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
done
echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} as two trios: DONE! +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""
#######################################################################################
#######################################################################################
### analyze only the two affected siblings and identify shared variants in them ###
#######################################################################################
#######################################################################################
echo ""
echo ""
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Analysing QUAD family ${FAMILY_ID} for shared variants in the two affected siblings +++"
echo "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""
##########################################################
# generate the affacted siblings PED file #
# named: ${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_shared.ped #
##########################################################
quad_ped_file=${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}.ped
time ${PYTHON2} ${SCRIPTS_DIR}/generate_aff_sib_PED_from_quad.py ${PED_DIR} ${quad_ped_file} ${KID_1_ID} ${KID_2_ID}
##########################################################################
# generate the affected siblings VCF file #
# named: ${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz #
##########################################################################
quad_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}-gatk-haplotype-annotated.vcf.gz
shared_vcf_file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz
# tabix index the quad file just in case
time ${TABIX} -p vcf ${quad_vcf_file}
# extract a VCF for these two kids
time java -Xmx24g -jar ${GATK3} -T SelectVariants \
-R ${REFERENCE_GENOME} \
-V ${quad_vcf_file} \
-sn ${KID_1_ID}_${FAMILY_ID} \
-sn ${KID_2_ID}_${FAMILY_ID} \
-jdk_deflater \
-jdk_inflater \
-o ${shared_vcf_file} \
-env
###############################################################################
### DNU and clean the the siblings VCF ###
### format: ${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz ###
###############################################################################
echo ""
echo ""
echo "Performing DNU and cleaning of the ${PLATE_ID}_${FAMILY_ID}_shared's VCF file..."
time ${VT} decompose -s ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz
time ${VT} normalize ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz -r ${REFERENCE_GENOME} -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz
time ${VT} uniq ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz -o ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz
# remove sites with AC=0
time ${BCFTOOLS} view --min-ac=1 --no-update ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf
# reset GT to no-call if num_ALT < num_ALT_THERSH or VAF < VAF_THRESH and GT != 0/0
# exlude variants from the blacklist (matching on chr,pos,ref,alt)
time ${PYTHON2} ${SCRIPTS_DIR}/filter_LQ_GT.py ${BLACKLIST} ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf
# bgzip and tabix it
time cat ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf | ${BGZIP} > ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
time ${TABIX} -p vcf ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
# delete intermediate files
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared-gatk-haplotype-annotated.vcf.gz
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.decomp.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.norm.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.DNU.vcf.gz*
rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.AC0.vcf
# to avoid bgzip pipe broken annoying, but not problematic message - skip the next step, the file will be used by G2P as IN_FILE and will be deleted last
# rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DNU, AC=0, num_ALT & VAF & blacklist cleaning and of the ${PLATE_ID}_${FAMILY_ID}_shared's VCF file: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
################################################################
### run G2P for the two affected siblings (DD genes) ###
### format: ${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf ###
################################################################
echo "Performing G2P analysis (DD genes)for FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_shared..."
echo "Using ${TARGETS}"
IN_FILE=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf
G2P_LOG_DIR=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_LOG_DIR
mkdir ${G2P_LOG_DIR}
TXT_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.report.txt
HTML_OUT=${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.report.html
VCF_KEYS='gnomADe_r2.1.1_GRCh38|gnomADg_r3.1.1_GRCh38'
time ${VEP} \
-i ${IN_FILE} \
--output_file ${G2P_LOG_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_inter_out.txt \
--force_overwrite \
--assembly GRCh38 \
--fasta ${REFERENCE_GENOME} \
--offline \
--merged \
--use_given_ref \
--cache --cache_version 100 \
--dir_cache /home/u035/u035/shared/software/bcbio/genomes/Hsapiens/hg38/vep \
--individual all \
--transcript_filter "gene_symbol in /home/u035/u035/shared/resources/G2P/genes_in_DDG2P.20220113.txt" \
--dir_plugins /home/u035/u035/shared/software/bcbio/anaconda/share/ensembl-vep-100.4-0 \
--plugin G2P,file='/home/u035/u035/shared/resources/G2P/DDG2P.20220113.csv',af_from_vcf=1,confidence_levels='definitive&strong',af_from_vcf_keys=${VCF_KEYS},log_dir=${G2P_LOG_DIR},txt_report=${TXT_OUT},html_report=${HTML_OUT}
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "G2P analysis of FAMILY_ID = ${PLATE_ID}_${FAMILY_ID}_shared: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
########################################################
### run coverage for each proband (DD genes) ###
### run reccurent SNP coverage for each proband ###
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### already did it as part of the trio analysis ###
########################################################
###################################################################################
### for each proband generate the DECIPHER file ###
### ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz - the sibling VCF ###
### ${TRANS_MAP} - the current transcript mapping file ###
###################################################################################
echo "Generating the DECIPHER file for all probands in ${FAMILY_ID} ..."
# first, split the family VCF to individual VCFs
# -c1: minimum allele count (INFO/AC) of sites to be printed
# split multi-allelic sites (by -m -any)
# left-alignment and normalization (by adding the -f)
file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
echo "splitting $file"
for indi in `${BCFTOOLS} query -l $file`; do
${BCFTOOLS} view -c1 -Oz -s $indi -o ${file/.vcf*/.$indi.rough.vcf.gz} $file
${BCFTOOLS} norm -f ${REFERENCE_GENOME} -m -any -Oz -o ${file/.vcf*/.$indi.vcf.gz} ${file/.vcf*/.$indi.rough.vcf.gz}
rm ${file/.vcf*/.$indi.rough.vcf.gz}
done
# create the names of the needed files
PED_FILE=${PED_DIR}/${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}_shared.ped
IN_G2P_FILE=${G2P_DIR}/${PLATE_ID}_${FAMILY_ID}_shared_LOG_DIR/${PLATE_ID}_${FAMILY_ID}_shared.report.txt
FAM_IGV_DIR=${IGV_DIR}/${PLATE_ID}_${FAMILY_ID}_shared
FAM_BAM_DIR=${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}
## call the python scrpit
time ${PYTHON2} ${SCRIPTS_DIR}/generate_DEC_IGV_aff_sib_scripts_from_quad.py \
${DECIPHER_ID} \
${TRANS_MAP} \
${PED_FILE} \
${IN_G2P_FILE} \
${FAM_IGV_DIR} \
${VCF_DIR} \
${PLATE_ID} \
${FAMILY_ID} \
${DEC_DIR} \
${FAM_BAM_DIR}
#############################################################################################################################
## using the DECIPHER bulk upload file v9 for each proband --> generate the DECIPHER bulk upload file v10 for each proband ##
#############################################################################################################################
# from the VCF, get all IDs (in the format probad_family_id), they are all affected probands (already checked at the start)
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}
file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
for INDI_ID in `${BCFTOOLS} query -l $file`; do
#################################
##### for each proband ####
#################################
echo "...Generating v10 Decipher bulk upload file for proband = ${INDI_ID} ...."
time ${PYTHON3} ${SCRIPTS_DIR}/convert_DEC_to_v10.py ${DEC_DIR} ${INDI_ID}_shared
done
echo ""
echo ""
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo "DECIPHER analysis of all probands in ${FAMILY_ID}: done"
echo "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^"
echo ""
echo ""
#rm ${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.clean.vcf
##############################################################################################
### for each of the affected probands ###
### for each variant in the DECIPHER upload file (only the shared variants) ###
### generate a IGV snapshot based on the realigned BAM used by GATK for calling variants ###
### first, generate BAMOUTs for each variant (to be stored in the BAMOUT folder) ###
### then, generate a batch script for IGV to produce the snapshots based on the BAMOUTs ###
##############################################################################################
echo ""
echo ""
echo "Generating the BAMOUT files for the ${FAMILY_ID} family ...."
# get the ids of the affected probands to generate the part of the command line which refers to the BAM files to by analysed
file=${VCF_DIR}/${PLATE_ID}_${FAMILY_ID}_shared.ready.vcf.gz
# INDI_ID is in format ${PROBAND_ID}_${FAMILY_ID}
aff_pro_arr=()
for INDI_ID in `${BCFTOOLS} query -l $file`; do
aff_pro_arr+=(${INDI_ID})
done
echo " Found ${#aff_pro_arr[@]} affected probands in ${FAMILY_ID} for which BAMOUTs to be generated"
for key in "${!aff_pro_arr[@]}"; do
echo " ${aff_pro_arr[$key]}";
#~# INPUT_BAM_LINE=${INPUT_BAM_LINE}" --input ${SOURCE_DIR}/????-??-??_${VERSION_N}_${BATCH_ID}_${PLATE_ID}_${FAMILY_ID}/${aff_pro_arr[$key]}/${aff_pro_arr[$key]}-ready.bam"
INPUT_BAM_LINE=${INPUT_BAM_LINE}" --input ${SOURCE_DIR}/${BATCH_NUM}_${VERSION_N}/families/????-??-??_${BATCH_NUM}_${VERSION_N}_${PLATE_ID}_${FAMILY_ID}/${aff_pro_arr[$key]}/${aff_pro_arr[$key]}-ready.bam"
done
# now go over the shared G2P variants in the for which to generate bamouts
# the variants should be identical in the DECIPHER files for all affected individuals, pick the first individual
# chr is the second column - need to add the 'chr' prefix
# pos is the third column
# the first line is a header line, starting with 'Internal reference number or ID'
# file called: ${DEC_DIR}/<proband_id>_<fam_id>_shared_DEC_FLT.csv
# and for each run GATK to generate the bamout files
# to be stored in ${BAMOUT_DIR}/${FAMILY_ID}_shared
mkdir ${BAMOUT_DIR}/${FAMILY_ID}_shared
var_file=${DEC_DIR}/${aff_pro_arr[0]}_shared_DEC_FLT.csv
echo "... reading the shared variants in ${var_file} to generate the bamouts for each ..."
grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
echo ""
echo ""
echo ""
echo "$line"
IFS=, read -ra ary <<<"$line"
chr=${ary[1]}
pos=${ary[2]}
ref=${ary[4]}
alt=${ary[5]}
echo " --> chr = $chr, pos = $pos, ref = ${ref}, alt = ${alt}"
# generate the bamout file
echo "...doing the bamout"
echo " time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} ${INPUT_BAM_LINE}"
echo " -L chr${chr}:${pos} --interval-padding 500 --active-probability-threshold 0.000 -ploidy 2"
echo " --output ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam"
time ${GATK4} HaplotypeCaller --reference ${REFERENCE_GENOME} ${INPUT_BAM_LINE} -L chr${chr}:${pos} --interval-padding 500 \
--active-probability-threshold 0.000 -ploidy 2 \
--output ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.vcf -bamout ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam
done
##############################################################################################
## write the IGV batch file for each affected individual in this family based on the bamouts #
## to be stored as /home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${PROBAND_ID}_${FAMILY_ID}.shared.snapshot.txt #
## ${PROBAND_ID}_${FAMILY_ID} == ${aff_pro_arr[$key] #
##################################################################
for key in "${!aff_pro_arr[@]}"; do
echo ""
echo ""
echo "Generating the IGV batch file for ${aff_pro_arr[$key]}";
#~# snap_file=/scratch/u035/u035/shared/trio_whole_exome/analysis/${PROJECT_ID}/DECIPHER/IGV/bamout_${aff_pro_arr[$key]}.shared.snapshot.txt
snap_file=/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/bamout_${aff_pro_arr[$key]}.shared.snapshot.txt
# check if previous version exist, if so - delete it
if [ -f "${snap_file}" ]; then
echo "previous version of ${snap_file} exist --> deleted"
rm ${snap_file}
fi
# write the header for the IGV batch file
echo "new" >> ${snap_file}
echo "genome hg38" >> ${snap_file}
echo "snapshotDirectory \"/home/u035/u035/shared/analysis/work/${PROJECT_ID}/DECIPHER/IGV/${PLATE_ID}_${FAMILY_ID}_shared\"" >> ${snap_file}
echo "" >> ${snap_file}
# now, go again over the variants in this individual's DECIPHER file and generate one snapshot file for all the variants
var_file=${DEC_DIR}/${aff_pro_arr[$key]}_shared_DEC_FLT.csv
echo "... reading ${var_file} to generate the IGV batch file using the bamouts..."
grep -v '^Internal' ${var_file} |
while IFS= read -r line
do
IFS=, read -ra ary <<<"$line"
chr=${ary[1]}
pos=${ary[2]}
ref=${ary[4]}
alt=${ary[5]}
left=$((${pos}-25))
right=$((${pos}+25))
echo "new" >> ${snap_file}
echo "load ${BAMOUT_DIR}/${FAMILY_ID}_shared/${FAMILY_ID}_chr${chr}_${pos}.bamout.bam" >> ${snap_file}
echo "preference SAM.SHADE_BASE_QUALITY true" >> ${snap_file}
echo "goto chr${chr}:${left}-${right}" >> ${snap_file}
echo "group SAMPLE" >> ${snap_file}
echo "sort base" >> ${snap_file}
echo "squish" >> ${snap_file}
echo "snapshot bamout_${aff_pro_arr[$key]}_shared_chr${chr}_${pos}_${ref}_${alt}.png" >> ${snap_file}
echo "" >> ${snap_file}
echo "" >> ${snap_file}
done
echo "Generating of the IGV batch file based on bamouts for ${aff_pro_arr[$key]}- done!"
echo "snap_file = ${snap_file}"
done
echo ""
echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo "+++ Variant prioritization of family ${FAMILY_ID} as affected sib-pair completed +++"
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
echo ""
echo ""
echo "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"