Newer
Older
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amsmath}
\title{Bridgeland Stabilities and Finding Walls}
\subtitle{}
\author{Luke Naylor}
\date{March 2023}
\newcommand\RR{\mathbb{R}}
\newcommand\CC{\mathbb{C}}
\newcommand\centralcharge{\mathcal{Z}}
\newcommand\coh{\operatorname{Coh}}
\newcommand\rank{\operatorname{rk}}
\newcommand\degree{\operatorname{deg}}
\newcommand\realpart{\mathfrak{Re}}
\newcommand\imagpart{\mathfrak{Im}}
\newcommand\Torsion{\mathcal{T}}
\newcommand\Free{\mathcal{F}}
\newcommand\firsttilt[1]{\mathcal{B}^{#1}}
\newcommand\derived{\mathcal{D}}
from sagetexscripts import *
\end{sagesilent}
\section{Transitioning to Stab on Triangulated Categories}
\begin{frame}{Central Charge for Mumford Stability}
\begin{align*}
&\centralcharge \colon \coh(X) \to \CC \\
&\centralcharge (E) = - \degree(E) + i \rank(E)
\begin{columns}[T] % align columns
\begin{column}{.48\linewidth}
\[
\centralcharge (E) = r(E) e^{i\pi \varphi(E)}
\]
\begin{center}
\begin{large}
$\varphi$ called "phase"
\end{large}
\end{center}
\end{column}%
%\hfill%
\begin{column}{.48\linewidth}
\[
\mu(E) =
\frac{
- \realpart(\centralcharge(E))
}{
\imagpart(\centralcharge(E))
}
\quad
\]
\begin{center}
\begin{large}
(allow for $+\infty$)
\end{large}
\end{center}
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
\begin{frame}{Extending Central Charge to $D^b(X)$}
\[
E^\bullet = [\cdots \to * \to * \to * \to \cdots] \in D^b(X)
\]
\begin{align*}
\rank(E^\bullet) &= \sum (-1)^i \rank(\cohom^i(E)) \\
\degree(E^\bullet) &= \sum (-1)^i \degree(\cohom^i(E))
\end{align*}
\vfill
\begin{columns}[t,onlytextwidth]
\begin{column}{.5\linewidth}
In particular, for shifts:
\begin{itemize}
\item $\rank(E[1]) = - \rank(E)$
\item $\degree(E[1]) = - \degree(E)$
\end{itemize}
\end{column}
\begin{column}{.49\linewidth}
For $\centralcharge$:
\begin{itemize}
\item $\centralcharge(E[1]) = - \centralcharge(E)$
\item $\centralcharge(E[2]) = \centralcharge(E)$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig2.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig3.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig4.plot()}
}
\end{column}%
\end{columns}
\vfill
\begin{itemize}
\item $\centralcharge(E[2]) = \centralcharge(E)$
\item But $\phi(E[n]) = \phi(E) + n$
\item Stability decided among $E \in D^b(X) \colon \phi(E) \in (0, \pi] =
\coh(X)$ \\
\begin{frame}{Benefits of this Generalization}
\begin{itemize}
\item Can take different slicings (and heart)
\item Tweak $\centralcharge$ \quad $\to$ \quad m.b. tweak slicing
\item No ``strong'' Bridgeland stabilities with $\coh(X)$ as heart for dim>1
\item Gieseker stability (a polynomial stability) can be constructed as a
limit of Bridgeland stabilities
\section{Moving to Picard Rank 1 Surfaces}
\begin{frame}{Moving to Surfaces}
\begin{itemize}
\item $\centralcharge(\bigO_x) = 0$ for Mumford stability
\\ ignores extra term in Chern character:
$(r, d \ell, \chi)$
\item Classically, Gieseker stability used
\\ \qquad slope comparison $\to$ lexicographic comparison
\end{itemize}
\end{frame}
\begin{frame}{New Central Charges for Surfaces}
Explicitly constructed for K3 - Bridgeland (2003)
\vfill
\begin{tcolorbox}[title=Picard Rank 1 with polarization $L$]
\begin{align*}
\centralcharge_{\alpha, \beta}(E) &:=
- \left<
&\text{where}\:\:\ell := c_1(L),\:
\alpha\in\RR^{>0},\beta\in\RR
\\ &= - \chern_{\mathrm{top}}(\exp( \alpha \ell + \beta \ell i)^{-1} \otimes E)
&\text{($\leftarrow$ abuse)}
\end{align*}
\end{tcolorbox}
\vfill
$\exp(a) = \left(1, a, \frac12 a^2\right)$ defined formally,
in particular: $\exp(n \ell) = L^{\otimes n}$
\vfill
{
\color{gray}
For Mumford stability on Curves:
\begin{align*}
\centralcharge(E) &= -\chern_1(E) + \chern_0(E) i
\\ &= - \left<\exp(-i), E\right>
\end{align*}
}
\end{frame}
\begin{sagesilent}
v = generic_chern_char(2, "v")
Z = stability.Tilt().central_charge(v).expand()
nu = stability.Tilt().slope(v)
\end{sagesilent}
\begin{frame}{Explicit Formulae for New Central Charge}
\begin{align*}
\centralcharge_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{Z} \\
\nu_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{nu} \\
\end{align*}
\vfill
\begin{center}
Denominator /
$\imagpart(\centralcharge_{\alpha, \beta}) > 0 \iff \beta < \frac{v_1}{v_0} = \mu$
\\ $\to$ other $E\in\coh(X)$ cannot be in heart
\end{center}
\end{frame}
\begin{frame}{New Heart - Tilting}
Role of $\coh(X)$ as heart of $\derived^b(X)$ replaced:
\vfill
\begin{tcolorbox}[title=First Tilt of $\coh(X)$]
\begin{align*}
\firsttilt\beta :=
\left\{
E \in \derived^b(X) \colon \quad
\cohom^{0}(E) \in \Torsion_\beta, \quad
\cohom^{-1}(E) \in \Free_\beta, \quad
\cohom^i(E) = 0 \:\: \text{o.w.}
\right\}
\end{align*}
where $\beta \in \RR$ and:
\begin{align*}
\Torsion_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) > \beta \quad \text{whenever} \: E \twoheadrightarrow G \not=0,E
\:\right\}&&
{\color{gray}
\: \ni \cohom^0
}
\\
\Free_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) \leq \beta \quad \text{whenever} \: 0 \not= G \hookrightarrow E
\:\right\}&&
{\color{gray}
\: \ni \cohom^{-1}
}
\end{align*}
\end{tcolorbox}
\vfill
\begin{itemize}
\item $\Torsion_\beta \subset \firsttilt\beta$ includes Mumford semistable
$E \in Coh(X)$ s.t. $\mu(E) \geq \beta$
\item As $\beta \to - \infty$, \: $\firsttilt\beta \rightsquigarrow \coh(X)$
\begin{itemize}
\item $\Torsion_\beta \rightsquigarrow \coh(X)$
\item $\Free_\beta \rightsquigarrow 0$
\end{itemize}
{\color{gray}
\item $\hom(T, F) = 0$ for $T \in \Torsion_\beta, F \in \Free_\beta$
makes this a torsion theory
\item As $\beta \to +\infty$, \:
$\Torsion_\beta \rightsquigarrow$ torsion sheaves (includes skyscrapers)
\begin{frame}{Tilts $\firsttilt\beta$ on $\alpha,\beta$-Plane}
When $E \in \coh(X)$ is Gieseker semistable (hence Mumford semistable):
\resizebox{1\hsize}{!}{
\sageplot{fig5.plot()}
}
\end{frame}
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
\begin{frame}{Notable Stability Conditions on Plane}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.49\linewidth}
When $\beta = \mu(E)$ \\
$\nu_{\alpha, \beta}(E) = + \infty$ so can only be destabilized by
$F \hookrightarrow E$ with $\nu_{\alpha, \beta}(F) = + \infty$ too
($\beta = \mu(F)$)
\end{column}%
\hfill%
\begin{column}{.49\linewidth}
\begin{align*}
\nu_{\alpha, -n}(E) &=
\frac{
\chern_2(E\otimes L^n)
{\color{gray}
- \frac{\alpha^2}{2} \rank(E)
}
}{
{\color{gray}
(\chern_1(E) +
}
n \rank(E)
{\color{gray}
)
}
}
\end{align*}
\begin{tcolorbox}[title=Gieseker Stability]
E stable when red. Hilb. poly.
\[
p_E(n) = \frac{\chern_2(E\otimes L^n)}{\rank(E)}
\]
not overtaken by that of any \\
$0 \not= F \hookrightarrow E$, for large $n$. \\
{\color{gray}
(equiv. to lexic. comparison between poly. coeffs)
}
\end{tcolorbox}
\end{column}
\end{columns}
\end{frame}
\section{Walls}
% walls, make the explanation about fixing a Chern character