Skip to content
Snippets Groups Projects
Commit 01681317 authored by Luke Naylor's avatar Luke Naylor
Browse files

Add subscripts to a and b to denote what they depend on

parent ff1b012b
No related branches found
No related tags found
No related merge requests found
......@@ -781,22 +781,24 @@ Some of the details around the associated numerics are explored next.
The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}),
% ref to Schmidt?
Suppose $\beta = \frac{a}{n}$ for some coprime $n \in \NN,a \in \ZZ$.
\renewcommand{\aa}{{a_F}}
\newcommand{\bb}{{b_q}}
Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$.
Then fix a value of $q$:
\begin{equation}
q:=\chern_1^{\beta}(E)
=\frac{b}{n}
=\frac{\bb}{n}
\in
\frac{1}{n} \ZZ
\cap [0, \chern_1^{\beta}(F)]
\end{equation}
as noted at the beginning of this section (\ref{sec:refinement}).
Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is not integral:
Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is integral:
\begin{sagesilent}
var("a b n") # Define symbols introduce for values of beta and q
q_value_expr = (q == b/n)
beta_value_expr = (beta == a/n)
var("a_F b_q n") # Define symbols introduce for values of beta and q
beta_value_expr = (beta == a_F/n)
q_value_expr = (q == b_q/n)
\end{sagesilent}
\begin{equation}
......@@ -806,7 +808,8 @@ beta_value_expr = (beta == a/n)
\end{equation}
\noindent
That is, $r \equiv -a^{-1}b$ mod $n$ ($a$ is coprime to $n$, and so invertible mod $n$).
That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to
$n$, and so invertible mod $n$).
Substituting the current values of $q$ and $\beta$ into the condition for the
radius of the pseudo-wall being positive
......@@ -816,7 +819,9 @@ radius of the pseudo-wall being positive
\label{eqn:positive_rad_condition_in_terms_of_q_beta}
\frac{1}{m}\ZZ
\ni
\qquad
\sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()}
\qquad
\in
\frac{1}{2n^2}\ZZ
\end{equation}
......@@ -838,7 +843,7 @@ this happens when:
\sage{bgmlv2_d_upperbound_exp_term},
\sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)},
\right)
< \epsilon := \frac{1}{\lcm(m,2n^2)}
< \epsilon_{\beta} := \frac{1}{\lcm(m,2n^2)}
\end{equation}
%% refinements using specific values of q and beta
......@@ -859,13 +864,13 @@ Considering the numerator of the right-hand-side of
\begin{align}
\sage{rhs_numerator}
&\equiv (a(-a^{-1}b)+2b)a &\mod n
&\equiv (\aa(-\aa^{-1}\bb)+2\bb)\aa &\mod n
\\
&\equiv ab &\mod n
&\equiv \aa\bb &\mod n
\end{align}
\noindent
And so, we also have $a(ar+2b) \equiv ab$ (mod $2n^2$).
And so, we also have $\aa(\aa r+2\bb) \equiv \aa\bb$ (mod $2n^2$).
\minorheading{Irrational $\beta$}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment