Skip to content
Snippets Groups Projects
Commit 0a94e5e7 authored by Luke Naylor's avatar Luke Naylor
Browse files

Adjust reference to twisted chern 1 of u being bounded

parent c2bff977
No related branches found
No related tags found
No related merge requests found
...@@ -706,8 +706,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. ...@@ -706,8 +706,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\item $r > 0$ \item $r > 0$
\item $\Delta(u) \geq 0$ \item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$ \item $\Delta(v-u) \geq 0$
\item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ \item $\mu(u)=\frac{c}{r}<\mu(v)$
\item $\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ \item $0\leq\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$
\label{item:chern1bound:lem:num_test_prob1}
\item $\chern_2^{P}(u)>0$ \item $\chern_2^{P}(u)>0$
\end{enumerate} \end{enumerate}
\end{lemma} \end{lemma}
...@@ -719,6 +720,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. ...@@ -719,6 +720,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
conditions for $u$ being a solution to problem conditions for $u$ being a solution to problem
\ref{problem:problem-statement-1} are precisely equivalent to the \ref{problem:problem-statement-1} are precisely equivalent to the
remaining conditions in this lemma. remaining conditions in this lemma.
% TODO maybe make this more explicit
% (the conditions are not exactly the same)
\end{proof} \end{proof}
...@@ -733,8 +736,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. ...@@ -733,8 +736,8 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\item $r > 0$ \item $r > 0$
\item $\Delta(u) \geq 0$ \item $\Delta(u) \geq 0$
\item $\Delta(v-u) \geq 0$ \item $\Delta(v-u) \geq 0$
\item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ \item $\mu(u)=\frac{c}{r}<\mu(v)$
\item $\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ \item $0\leq\chern_1^{\beta_{-}}(u)\leq\chern_1^{\beta_{-}}(v)$
\item $\chern_2^{\beta_{-}}(u)>0$ \item $\chern_2^{\beta_{-}}(u)>0$
\end{enumerate} \end{enumerate}
\end{corrolary} \end{corrolary}
...@@ -952,10 +955,17 @@ As opposed to only eliminating possible values of $\chern_0(E)$ for which all ...@@ -952,10 +955,17 @@ As opposed to only eliminating possible values of $\chern_0(E)$ for which all
corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what
was implicitly happening before). was implicitly happening before).
First, let us fix a Chern character for $F$, and some semistabilizer $E$: % NOTE FUTURE: surface specialization
First, let us fix a Chern character for $F$, and some pseudo-semistabilizer
$u$ which is a solution to problem
\ref{problem:problem-statement-1} or
\ref{problem:problem-statement-2}.
\begin{align} \begin{align}
v &\coloneqq \chern(F) = (R,C\ell,D\ell^2) \\ \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2)
u &\coloneqq \chern(E) = (r,c\ell,d\ell^2) && \text{where $R,C,2D\in \ZZ$}
\\
u \coloneqq& \:(r,c\ell,d\ell^2)
&& \text{where $r,c,2d\in \ZZ$}
\end{align} \end{align}
\begin{sagesilent} \begin{sagesilent}
...@@ -970,8 +980,11 @@ u = Chern_Char(*var("r c d", domain="real")) ...@@ -970,8 +980,11 @@ u = Chern_Char(*var("r c d", domain="real"))
Δ = lambda v: v.Q_tilt() Δ = lambda v: v.Q_tilt()
\end{sagesilent} \end{sagesilent}
Recall from eqn \ref{eqn-tilt-cat-cond} that $\chern_1^{\beta}(u)$ has fixed Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
bounds in terms of $\chern_1^{\beta}(v)$, and so we can write: lemma \ref{lem:pseudo_wall_numerical_tests}
(or corrolary \ref{cor:numerical-test-left-pseudowalls-rational-betamin})
that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
and so we can write:
\begin{sagesilent} \begin{sagesilent}
ts = stability.Tilt ts = stability.Tilt
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment