Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
1dfc820d
Commit
1dfc820d
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Unindent SageMath lines
parent
a2174747
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#26873
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+128
-128
128 additions, 128 deletions
main.tex
with
128 additions
and
128 deletions
main.tex
+
128
−
128
View file @
1dfc820d
...
...
@@ -150,31 +150,31 @@ $\chern(F) = (R,C,D)$, and consider the possible Chern characters
$
\chern
(
E
)
=
(
r,c,d
)
$
of some semistabilizer
$
E
$
.
\begin{sagesilent}
# Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple
# Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple
from pseudowalls import *
from pseudowalls import *
v = Chern
_
Char(*var("R C D", domain="real"))
u = Chern
_
Char(*var("r c d", domain="real"))
v = Chern
_
Char(*var("R C D", domain="real"))
u = Chern
_
Char(*var("r c d", domain="real"))
Δ = lambda v: v.Q
_
tilt()
Δ = lambda v: v.Q
_
tilt()
\end{sagesilent}
Recall [ref] that
$
\chern
_
1
^{
\beta
_{
-
}}$
has fixed bounds in terms of
$
\chern
(
F
)
$
, and so we can write:
\begin{sagesilent}
ts = stability.Tilt
beta
_
min = var("beta", domain="real")
ts = stability.Tilt
beta
_
min = var("beta", domain="real")
c
_
lower
_
bound = -(
ts(beta=beta
_
min).rank(u)
/ts().alpha
).expand() + c
c
_
lower
_
bound = -(
ts(beta=beta
_
min).rank(u)
/ts().alpha
).expand() + c
var("q", domain="real")
c
_
in
_
terms
_
of
_
q = c
_
lower
_
bound + q
var("q", domain="real")
c
_
in
_
terms
_
of
_
q = c
_
lower
_
bound + q
\end{sagesilent}
\begin{equation}
...
...
@@ -195,8 +195,8 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
This condition expressed in terms of
$
R,C,D,r,c,d
$
looks as follows:
\begin{sagesilent}
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv1 = Δ(v) - Δ(u) - Δ(v-u)
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv1 = Δ(v) - Δ(u) - Δ(v-u)
\end{sagesilent}
\begin{equation}
...
...
@@ -209,11 +209,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
\begin{sagesilent}
bgmlv1
_
with
_
q = (
bgmlv1
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
bgmlv1
_
with
_
q = (
bgmlv1
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\begin{equation}
...
...
@@ -225,17 +225,17 @@ we get the following:
This can be rearranged to express a bound on
$
d
$
as follows:
\begin{sagesilent}
var("r
_
alt",domain="real") # r
_
alt = r - R/2 temporary substitution
var("r
_
alt",domain="real") # r
_
alt = r - R/2 temporary substitution
bgmlv1
_
with
_
q
_
reparam = (bgmlv1
_
with
_
q.subs(r == r
_
alt + R/2)/r
_
alt).expand()
bgmlv1
_
with
_
q
_
reparam = (bgmlv1
_
with
_
q.subs(r == r
_
alt + R/2)/r
_
alt).expand()
bgmlv1
_
d
_
ineq = (
((0 >= -bgmlv1
_
with
_
q
_
reparam)/4 + d) # Rearrange for d
.subs(r
_
alt == r - R/2) # Resubstitute r back in
.expand()
)
bgmlv1
_
d
_
ineq = (
((0 >= -bgmlv1
_
with
_
q
_
reparam)/4 + d) # Rearrange for d
.subs(r
_
alt == r - R/2) # Resubstitute r back in
.expand()
)
bgmlv1
_
d
_
lowerbound = bgmlv1
_
d
_
ineq.rhs() # Keep hold of lower bound for d
bgmlv1
_
d
_
lowerbound = bgmlv1
_
d
_
ineq.rhs() # Keep hold of lower bound for d
\end{sagesilent}
\begin{dmath}
...
...
@@ -244,35 +244,35 @@ This can be rearranged to express a bound on $d$ as follows:
\end{dmath}
\begin{sagesilent}
# Sep
e
rate out the terms of the lower bound for d
bgmlv1
_
d
_
lowerbound
_
without
_
hyp = bgmlv1
_
d
_
lowerbound.subs(1/(R-2*r) == 0)
bgmlv1
_
d
_
lowerbound
_
exp
_
term = (
bgmlv1
_
d
_
lowerbound
- bgmlv1
_
d
_
lowerbound
_
without
_
hyp
).expand()
bgmlv1
_
d
_
lowerbound
_
const
_
term = bgmlv1
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
bgmlv1
_
d
_
lowerbound
_
linear
_
term = (
bgmlv1
_
d
_
lowerbound
_
without
_
hyp
- bgmlv1
_
d
_
lowerbound
_
const
_
term
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
assert bgmlv1
_
d
_
lowerbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]/2
+ beta
_
min*q
)
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
(
- R*v.twist(beta
_
min).ch[2]/2
- R*beta
_
min*q
+ C*q
- q
^
2
)/(R-2*r)
).expand()
# Sep
a
rate out the terms of the lower bound for d
bgmlv1
_
d
_
lowerbound
_
without
_
hyp = bgmlv1
_
d
_
lowerbound.subs(1/(R-2*r) == 0)
bgmlv1
_
d
_
lowerbound
_
exp
_
term = (
bgmlv1
_
d
_
lowerbound
- bgmlv1
_
d
_
lowerbound
_
without
_
hyp
).expand()
bgmlv1
_
d
_
lowerbound
_
const
_
term = bgmlv1
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
bgmlv1
_
d
_
lowerbound
_
linear
_
term = (
bgmlv1
_
d
_
lowerbound
_
without
_
hyp
- bgmlv1
_
d
_
lowerbound
_
const
_
term
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
assert bgmlv1
_
d
_
lowerbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]/2
+ beta
_
min*q
)
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
(
- R*v.twist(beta
_
min).ch[2]/2
- R*beta
_
min*q
+ C*q
- q
^
2
)/(R-2*r)
).expand()
\end{sagesilent}
...
...
@@ -295,8 +295,8 @@ so some of these expressions simplify.
This condition expressed in terms of
$
R,C,D,r,c,d
$
looks as follows:
\begin{sagesilent}
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv2 = Δ(u)
# First Bogomolov-Gieseker form expression that must be non-negative:
bgmlv2 = Δ(u)
\end{sagesilent}
\begin{equation}
...
...
@@ -309,11 +309,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
\begin{sagesilent}
bgmlv2
_
with
_
q = (
bgmlv2
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
bgmlv2
_
with
_
q = (
bgmlv2
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\begin{equation}
...
...
@@ -325,13 +325,13 @@ we get the following:
This can be rearranged to express a bound on
$
d
$
as follows:
\begin{sagesilent}
bgmlv2
_
d
_
ineq = (
(0 <= bgmlv2
_
with
_
q)/2/r # rescale assuming r > 0
+ d # Rearrange for d
).expand()
bgmlv2
_
d
_
ineq = (
(0 <= bgmlv2
_
with
_
q)/2/r # rescale assuming r > 0
+ d # Rearrange for d
).expand()
# Keep hold of lower bound for d
bgmlv2
_
d
_
lowerbound = bgmlv2
_
d
_
ineq.rhs()
# Keep hold of lower bound for d
bgmlv2
_
d
_
lowerbound = bgmlv2
_
d
_
ineq.rhs()
\end{sagesilent}
\begin{equation}
...
...
@@ -340,17 +340,17 @@ This can be rearranged to express a bound on $d$ as follows:
\end{equation}
\begin{sagesilent}
# Seperate out the terms of the lower bound for d
bgmlv2
_
d
_
lowerbound
_
without
_
hyp = bgmlv2
_
d
_
lowerbound.subs(1/r == 0)
bgmlv2
_
d
_
lowerbound
_
const
_
term = bgmlv2
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
bgmlv2
_
d
_
lowerbound
_
linear
_
term = (
bgmlv2
_
d
_
lowerbound
_
without
_
hyp
- bgmlv2
_
d
_
lowerbound
_
const
_
term
).expand()
bgmlv2
_
d
_
lowerbound
_
exp
_
term = (
bgmlv2
_
d
_
lowerbound
- bgmlv2
_
d
_
lowerbound
_
without
_
hyp
).expand()
# Seperate out the terms of the lower bound for d
bgmlv2
_
d
_
lowerbound
_
without
_
hyp = bgmlv2
_
d
_
lowerbound.subs(1/r == 0)
bgmlv2
_
d
_
lowerbound
_
const
_
term = bgmlv2
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
bgmlv2
_
d
_
lowerbound
_
linear
_
term = (
bgmlv2
_
d
_
lowerbound
_
without
_
hyp
- bgmlv2
_
d
_
lowerbound
_
const
_
term
).expand()
bgmlv2
_
d
_
lowerbound
_
exp
_
term = (
bgmlv2
_
d
_
lowerbound
- bgmlv2
_
d
_
lowerbound
_
without
_
hyp
).expand()
\end{sagesilent}
Viewing equation
\ref
{
eqn-bgmlv2
_
d
_
lowerbound
}
as a lower bound for
$
d
$
in term
...
...
@@ -370,8 +370,8 @@ for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}.
This condition expressed in terms of
$
R,C,D,r,c,d
$
looks as follows:
\begin{sagesilent}
# Third Bogomolov-Gieseker form expression that must be non-negative:
bgmlv3 = Δ(v-u)
# Third Bogomolov-Gieseker form expression that must be non-negative:
bgmlv3 = Δ(v-u)
\end{sagesilent}
\begin{equation}
...
...
@@ -384,11 +384,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
\begin{sagesilent}
bgmlv3
_
with
_
q = (
bgmlv3
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
bgmlv3
_
with
_
q = (
bgmlv3
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\begin{equation}
...
...
@@ -400,23 +400,23 @@ we get the following:
This can be rearranged to express a bound on
$
d
$
as follows:
\begin{sagesilent}
var("r
_
alt",domain="real") # r
_
alt = r - R temporary substitution
bgmlv3
_
with
_
q
_
reparam = (
bgmlv3
_
with
_
q
.subs(r == r
_
alt + R)
/r
_
alt # This operation assumes r
_
alt > 0
).expand()
bgmlv3
_
d
_
ineq = (
((0 <= bgmlv3
_
with
_
q
_
reparam)/2 + d) # Rearrange for d
.subs(r
_
alt == r - R) # Resubstitute r back in
.expand()
)
# Check that this equation represents a bound for d
assert bgmlv3
_
d
_
ineq.lhs() == d, f"Inequality is of the form:
{
bgmlv3
_
d
_
ineq
}
"
bgmlv3
_
d
_
upperbound = bgmlv3
_
d
_
ineq.rhs() # Keep hold of lower bound for d
var("r
_
alt",domain="real") # r
_
alt = r - R temporary substitution
bgmlv3
_
with
_
q
_
reparam = (
bgmlv3
_
with
_
q
.subs(r == r
_
alt + R)
/r
_
alt # This operation assumes r
_
alt > 0
).expand()
bgmlv3
_
d
_
ineq = (
((0 <= bgmlv3
_
with
_
q
_
reparam)/2 + d) # Rearrange for d
.subs(r
_
alt == r - R) # Resubstitute r back in
.expand()
)
# Check that this equation represents a bound for d
assert bgmlv3
_
d
_
ineq.lhs() == d, f"Inequality is of the form:
{
bgmlv3
_
d
_
ineq
}
"
bgmlv3
_
d
_
upperbound = bgmlv3
_
d
_
ineq.rhs() # Keep hold of lower bound for d
\end{sagesilent}
\begin{dmath}
...
...
@@ -425,35 +425,35 @@ This can be rearranged to express a bound on $d$ as follows:
\end{dmath}
\begin{sagesilent}
# Seperate out the terms of the lower bound for d
# Seperate out the terms of the lower bound for d
bgmlv3
_
d
_
upperbound
_
without
_
hyp = bgmlv3
_
d
_
upperbound.subs(1/(R-r) == 0)
bgmlv3
_
d
_
upperbound
_
without
_
hyp = bgmlv3
_
d
_
upperbound.subs(1/(R-r) == 0)
bgmlv3
_
d
_
upperbound
_
const
_
term = bgmlv3
_
d
_
upperbound
_
without
_
hyp.subs(r==0)
bgmlv3
_
d
_
upperbound
_
const
_
term = bgmlv3
_
d
_
upperbound
_
without
_
hyp.subs(r==0)
bgmlv3
_
d
_
upperbound
_
linear
_
term = (
bgmlv3
_
d
_
upperbound
_
without
_
hyp
- bgmlv3
_
d
_
upperbound
_
const
_
term
).expand()
bgmlv3
_
d
_
upperbound
_
linear
_
term = (
bgmlv3
_
d
_
upperbound
_
without
_
hyp
- bgmlv3
_
d
_
upperbound
_
const
_
term
).expand()
bgmlv3
_
d
_
upperbound
_
exp
_
term = (
bgmlv3
_
d
_
upperbound
- bgmlv3
_
d
_
upperbound
_
without
_
hyp
).expand()
bgmlv3
_
d
_
upperbound
_
exp
_
term = (
bgmlv3
_
d
_
upperbound
- bgmlv3
_
d
_
upperbound
_
without
_
hyp
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
# Verify the simplified forms of the terms that will be mentioned in text
assert bgmlv3
_
d
_
upperbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]
+ beta
_
min*q
).expand()
assert bgmlv3
_
d
_
upperbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]
+ beta
_
min*q
).expand()
assert bgmlv3
_
d
_
upperbound
_
exp
_
term == (
R*v.twist(beta
_
min).ch[2]
+ (C - q)
^
2/2
+ R*beta
_
min*q
- D*R
)/(r-R)
assert bgmlv3
_
d
_
upperbound
_
exp
_
term == (
R*v.twist(beta
_
min).ch[2]
+ (C - q)
^
2/2
+ R*beta
_
min*q
- D*R
)/(r-R)
\end{sagesilent}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment