Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
a2174747
Commit
a2174747
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Shorten SageMath lines and correct alternative expressions in 6.1
parent
61a90ba0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+72
-37
72 additions, 37 deletions
main.tex
with
72 additions
and
37 deletions
main.tex
+
72
−
37
View file @
a2174747
...
@@ -167,7 +167,11 @@ $\chern(F)$, and so we can write:
...
@@ -167,7 +167,11 @@ $\chern(F)$, and so we can write:
\begin{sagesilent}
\begin{sagesilent}
ts = stability.Tilt
ts = stability.Tilt
beta
_
min = var("beta", domain="real")
beta
_
min = var("beta", domain="real")
c
_
lower
_
bound = -(ts(beta=beta
_
min).rank(u)/ts().alpha).expand() + c
c
_
lower
_
bound = -(
ts(beta=beta
_
min).rank(u)
/ts().alpha
).expand() + c
var("q", domain="real")
var("q", domain="real")
c
_
in
_
terms
_
of
_
q = c
_
lower
_
bound + q
c
_
in
_
terms
_
of
_
q = c
_
lower
_
bound + q
...
@@ -205,7 +209,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
...
@@ -205,7 +209,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
we get the following:
\begin{sagesilent}
\begin{sagesilent}
bgmlv1
_
with
_
q = bgmlv1.expand().subs(c == c
_
in
_
terms
_
of
_
q)
bgmlv1
_
with
_
q = (
bgmlv1
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\end{sagesilent}
\begin{equation}
\begin{equation}
...
@@ -220,6 +228,7 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -220,6 +228,7 @@ This can be rearranged to express a bound on $d$ as follows:
var("r
_
alt",domain="real") # r
_
alt = r - R/2 temporary substitution
var("r
_
alt",domain="real") # r
_
alt = r - R/2 temporary substitution
bgmlv1
_
with
_
q
_
reparam = (bgmlv1
_
with
_
q.subs(r == r
_
alt + R/2)/r
_
alt).expand()
bgmlv1
_
with
_
q
_
reparam = (bgmlv1
_
with
_
q.subs(r == r
_
alt + R/2)/r
_
alt).expand()
bgmlv1
_
d
_
ineq = (
bgmlv1
_
d
_
ineq = (
((0 >= -bgmlv1
_
with
_
q
_
reparam)/4 + d) # Rearrange for d
((0 >= -bgmlv1
_
with
_
q
_
reparam)/4 + d) # Rearrange for d
.subs(r
_
alt == r - R/2) # Resubstitute r back in
.subs(r
_
alt == r - R/2) # Resubstitute r back in
...
@@ -236,45 +245,47 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -236,45 +245,47 @@ This can be rearranged to express a bound on $d$ as follows:
\begin{sagesilent}
\begin{sagesilent}
# Seperate out the terms of the lower bound for d
# Seperate out the terms of the lower bound for d
bgmlv1
_
d
_
lowerbound
_
exp
_
term = (bgmlv1
_
d
_
lowerbound*(R-2*r)).expand().subs(r==2*R)/(R-2*r)
bgmlv1
_
d
_
lowerbound
_
without
_
hyp = bgmlv1
_
d
_
lowerbound.subs(1/(R-2*r) == 0)
bgmlv1
_
d
_
lowerbound
_
const
_
term = bgmlv1
_
d
_
lowerbound.subs(1/(R-2*r) == 0).subs(r==0)
bgmlv1
_
d
_
lowerbound
_
linear
_
term = bgmlv1
_
d
_
lowerbound.subs(1/(R-2*r) == 0).subs(r==1)*r
# Verify the simplified forms of the terms that will be mentioned in text
bgmlv1
_
d
_
lowerbound
_
exp
_
term = (
assert bgmlv1
_
d
_
lowerbound
_
const
_
term == v.twist(beta
_
min).ch[2]/2 + beta
_
min*q, "fail"
bgmlv1
_
d
_
lowerbound
assert bgmlv1
_
d
_
lowerbound
_
linear
_
term == (v.twist(beta
_
min).ch[2]/2 + beta
_
min
^
2/2 + beta
_
min*q)*r, "fail"
- bgmlv1
_
d
_
lowerbound
_
without
_
hyp
).expand()
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
bgmlv1
_
d
_
lowerbound
_
const
_
term = bgmlv1
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
- 2*R*v.twist(beta
_
min).ch[2]
- 3*R
^
2*beta
_
min
^
2
- 4*R*beta
_
min*q
+ C*q
- q
^
2
).expand()/(R-2*r), "fail"
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
bgmlv1
_
d
_
lowerbound
_
linear
_
term = (
- 2*D*R + (C
^
2)/4
bgmlv1
_
d
_
lowerbound
_
without
_
hyp
- ((C - 4*R*beta
_
min)/2 - q)
^
2
- bgmlv1
_
d
_
lowerbound
_
const
_
term
).expand()/(R-2*r), "fail"
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
assert bgmlv1
_
d
_
lowerbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]/2
+ beta
_
min*q
)
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
assert bgmlv1
_
d
_
lowerbound
_
exp
_
term == (
(2*R*beta
_
min + q)
(
*(2*R*beta
_
min + q - C)
- R*v.twist(beta
_
min).ch[2]/2
+ 2*D*R
- R*beta
_
min*q
).expand()/(2*r - R), "fail"
+ C*q
- q
^
2
)/(R-2*r)
).expand()
\end{sagesilent}
\end{sagesilent}
\noindent
\noindent
Viewing equation
\ref
{
eqn-bgmlv1
_
d
_
lowerbound
}
as a lower bound for
$
d
$
given
Viewing equation
\ref
{
eqn-bgmlv1
_
d
_
lowerbound
}
as a lower bound for
$
d
$
given
as a function of
$
r
$
, the terms can be rewritten as follows.
as a function of
$
r
$
, the terms can be rewritten as follows.
The constant term in
$
r
$
is
The constant term in
$
r
$
is
$
\chern
^{
\beta
}_
2
(
F
)
+
\beta
q
$
.
$
\chern
^{
\beta
}_
2
(
F
)
/
2
+
\beta
q
$
.
The linear term in
$
r
$
is
The linear term in
$
r
$
is
$
(
\chern
^{
\beta
}_
2
(
F
)/
2
+
\beta
^
2
/
2
+
\beta
q
)
r
$
.
$
\sage
{
bgmlv
1
_
d
_
lowerbound
_
linear
_
term
}
$
.
Finally, there's an hyperbolic term in
$
r
$
which tends to 0 as
$
r
\to
\infty
$
,
Finally, there's an hyperbolic term in
$
r
$
which tends to 0 as
$
r
\to
\infty
$
,
and can be written:
and can be written:
$
\frac
{
-
2
R
\chern
^{
\beta
}_
2
(
F
)
-
3
R
^
2
\beta
^
2
-
4
Rq
\beta
+
Cq
-
q
^
2
}{
R
-
2
r
}$
or
$
\frac
{
R
\chern
^{
\beta
}_
2
(
F
)/
2
+
R
\beta
q
-
Cq
+
q
^
2
}{
2
r
-
R
}$
.
$
\frac
{
(
2
R
\beta
+
q
)(
2
R
\beta
+
q
-
C
)
+
2
DR
}{
2
r
-
R
}$
.
In the case
$
\beta
=
\beta
_{
-
}$
(or
$
\beta
_{
+
}$
) we have
In the case
$
\beta
=
\beta
_{
-
}$
(or
$
\beta
_{
+
}$
) we have
$
\chern
^{
\beta
}_
2
(
F
)
=
0
$
,
$
\chern
^{
\beta
}_
2
(
F
)
=
0
$
,
so some of these expressions simplify.
so some of these expressions simplify.
...
@@ -298,7 +309,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
...
@@ -298,7 +309,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
we get the following:
\begin{sagesilent}
\begin{sagesilent}
bgmlv2
_
with
_
q = bgmlv2.expand().subs(c == c
_
in
_
terms
_
of
_
q)
bgmlv2
_
with
_
q = (
bgmlv2
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\end{sagesilent}
\begin{equation}
\begin{equation}
...
@@ -311,11 +326,12 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -311,11 +326,12 @@ This can be rearranged to express a bound on $d$ as follows:
\begin{sagesilent}
\begin{sagesilent}
bgmlv2
_
d
_
ineq = (
bgmlv2
_
d
_
ineq = (
(
(0 <= bgmlv2
_
with
_
q)/2/r
+ d) # Rearrange for d
(0 <= bgmlv2
_
with
_
q)/2/r
# rescale assuming r > 0
.expand()
+ d # Rearrange for d
)
)
.expand()
bgmlv2
_
d
_
lowerbound = bgmlv2
_
d
_
ineq.rhs() # Keep hold of lower bound for d
# Keep hold of lower bound for d
bgmlv2
_
d
_
lowerbound = bgmlv2
_
d
_
ineq.rhs()
\end{sagesilent}
\end{sagesilent}
\begin{equation}
\begin{equation}
...
@@ -325,9 +341,16 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -325,9 +341,16 @@ This can be rearranged to express a bound on $d$ as follows:
\begin{sagesilent}
\begin{sagesilent}
# Seperate out the terms of the lower bound for d
# Seperate out the terms of the lower bound for d
bgmlv2
_
d
_
lowerbound
_
exp
_
term = (bgmlv2
_
d
_
lowerbound*r).expand().subs(r==0)/r
bgmlv2
_
d
_
lowerbound
_
without
_
hyp = bgmlv2
_
d
_
lowerbound.subs(1/r == 0)
bgmlv2
_
d
_
lowerbound
_
const
_
term = bgmlv2
_
d
_
lowerbound.subs(1/r == 0).subs(r==0)
bgmlv2
_
d
_
lowerbound
_
const
_
term = bgmlv2
_
d
_
lowerbound
_
without
_
hyp.subs(r==0)
bgmlv2
_
d
_
lowerbound
_
linear
_
term = bgmlv2
_
d
_
lowerbound.subs(1/r == 0).subs(r==1)*r
bgmlv2
_
d
_
lowerbound
_
linear
_
term = (
bgmlv2
_
d
_
lowerbound
_
without
_
hyp
- bgmlv2
_
d
_
lowerbound
_
const
_
term
).expand()
bgmlv2
_
d
_
lowerbound
_
exp
_
term = (
bgmlv2
_
d
_
lowerbound
- bgmlv2
_
d
_
lowerbound
_
without
_
hyp
).expand()
\end{sagesilent}
\end{sagesilent}
Viewing equation
\ref
{
eqn-bgmlv2
_
d
_
lowerbound
}
as a lower bound for
$
d
$
in term
Viewing equation
\ref
{
eqn-bgmlv2
_
d
_
lowerbound
}
as a lower bound for
$
d
$
in term
...
@@ -361,7 +384,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
...
@@ -361,7 +384,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following:
we get the following:
\begin{sagesilent}
\begin{sagesilent}
bgmlv3
_
with
_
q = bgmlv3.expand().subs(c == c
_
in
_
terms
_
of
_
q)
bgmlv3
_
with
_
q = (
bgmlv3
.expand()
.subs(c == c
_
in
_
terms
_
of
_
q)
)
\end{sagesilent}
\end{sagesilent}
\begin{equation}
\begin{equation}
...
@@ -376,14 +403,17 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -376,14 +403,17 @@ This can be rearranged to express a bound on $d$ as follows:
var("r
_
alt",domain="real") # r
_
alt = r - R temporary substitution
var("r
_
alt",domain="real") # r
_
alt = r - R temporary substitution
bgmlv3
_
with
_
q
_
reparam = (
bgmlv3
_
with
_
q
_
reparam = (
bgmlv3
_
with
_
q.subs(r == r
_
alt + R)
bgmlv3
_
with
_
q
.subs(r == r
_
alt + R)
/r
_
alt # This operation assumes r
_
alt > 0
/r
_
alt # This operation assumes r
_
alt > 0
).expand()
).expand()
bgmlv3
_
d
_
ineq = (
bgmlv3
_
d
_
ineq = (
((0 <= bgmlv3
_
with
_
q
_
reparam)/2 + d) # Rearrange for d
((0 <= bgmlv3
_
with
_
q
_
reparam)/2 + d) # Rearrange for d
.subs(r
_
alt == r - R) # Resubstitute r back in
.subs(r
_
alt == r - R) # Resubstitute r back in
.expand()
.expand()
)
)
# Check that this equation represents a bound for d
# Check that this equation represents a bound for d
assert bgmlv3
_
d
_
ineq.lhs() == d, f"Inequality is of the form:
{
bgmlv3
_
d
_
ineq
}
"
assert bgmlv3
_
d
_
ineq.lhs() == d, f"Inequality is of the form:
{
bgmlv3
_
d
_
ineq
}
"
bgmlv3
_
d
_
upperbound = bgmlv3
_
d
_
ineq.rhs() # Keep hold of lower bound for d
bgmlv3
_
d
_
upperbound = bgmlv3
_
d
_
ineq.rhs() # Keep hold of lower bound for d
...
@@ -398,21 +428,26 @@ This can be rearranged to express a bound on $d$ as follows:
...
@@ -398,21 +428,26 @@ This can be rearranged to express a bound on $d$ as follows:
# Seperate out the terms of the lower bound for d
# Seperate out the terms of the lower bound for d
bgmlv3
_
d
_
upperbound
_
without
_
hyp = bgmlv3
_
d
_
upperbound.subs(1/(R-r) == 0)
bgmlv3
_
d
_
upperbound
_
without
_
hyp = bgmlv3
_
d
_
upperbound.subs(1/(R-r) == 0)
bgmlv3
_
d
_
upperbound
_
const
_
term = bgmlv3
_
d
_
upperbound
_
without
_
hyp.subs(r==0)
bgmlv3
_
d
_
upperbound
_
const
_
term = bgmlv3
_
d
_
upperbound
_
without
_
hyp.subs(r==0)
bgmlv3
_
d
_
upperbound
_
linear
_
term = (
bgmlv3
_
d
_
upperbound
_
linear
_
term = (
bgmlv3
_
d
_
upperbound
_
without
_
hyp
bgmlv3
_
d
_
upperbound
_
without
_
hyp
- bgmlv3
_
d
_
upperbound
_
const
_
term
- bgmlv3
_
d
_
upperbound
_
const
_
term
).expand()
).expand()
bgmlv3
_
d
_
upperbound
_
exp
_
term = (
bgmlv3
_
d
_
upperbound
_
exp
_
term = (
bgmlv3
_
d
_
upperbound
bgmlv3
_
d
_
upperbound
- bgmlv3
_
d
_
upperbound
_
without
_
hyp
- bgmlv3
_
d
_
upperbound
_
without
_
hyp
).expand()
).expand()
# Verify the simplified forms of the terms that will be mentioned in text
# Verify the simplified forms of the terms that will be mentioned in text
assert bgmlv3
_
d
_
upperbound
_
const
_
term == (
assert bgmlv3
_
d
_
upperbound
_
const
_
term == (
v.twist(beta
_
min).ch[2]
v.twist(beta
_
min).ch[2]
+ beta
_
min*q
+ beta
_
min*q
).expand()
).expand()
assert bgmlv3
_
d
_
upperbound
_
exp
_
term == (
assert bgmlv3
_
d
_
upperbound
_
exp
_
term == (
R*v.twist(beta
_
min).ch[2]
R*v.twist(beta
_
min).ch[2]
+ (C - q)
^
2/2
+ (C - q)
^
2/2
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment