Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
20c165a0
Commit
20c165a0
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Update statement of main lemma to be aware of quotient being in tilt
parent
c65b2e91
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+11
-17
11 additions, 17 deletions
main.tex
with
11 additions
and
17 deletions
main.tex
+
11
−
17
View file @
20c165a0
...
@@ -284,36 +284,30 @@ the circular walls must be nested and non-intersecting.
...
@@ -284,36 +284,30 @@ the circular walls must be nested and non-intersecting.
\begin{lemma}
[Numerical tests for left-wall pseudo-semistabilizers]
\begin{lemma}
[Numerical tests for left-wall pseudo-semistabilizers]
\label
{
lem:pseudo
_
wall
_
numerical
_
tests
}
\label
{
lem:pseudo
_
wall
_
numerical
_
tests
}
Let
$
v
$
and
$
u
$
be Chern characters with
positive ranks and
$
\Delta
(
v
)
,
Let
$
v
$
and
$
u
$
be Chern characters with
$
\Delta
(
v
)
,
\Delta
(
u
)
\geq
0
$
. Let
$
P
$
be a point on
$
\Theta
_
v
^
-
$
.
\Delta
(
u
)
\geq
0
$
, and
$
v
$
has positive rank
. Let
$
P
$
be a point on
$
\Theta
_
v
^
-
$
.
\noindent
\noindent
Suppose that the following are satisfied
:
The following conditions
:
\bgroup
\bgroup
\renewcommand
{
\labelenumi
}{
\alph
{
enumi
}
.
}
\renewcommand
{
\labelenumi
}{
\alph
{
enumi
}
.
}
\begin{enumerate}
\begin{enumerate}
\item
$
u
$
gives rise to a pseudo-wall for
$
v
$
, left of the vertical line
$
V
_
v
$
\item
$
u
$
is a pseudo-semistabilizer of
$
v
$
at some point on
$
\Theta
_
v
^
-
$
above
\item
The pseudo-wall contains
$
P
$
in it's interior
$
P
$
(
$
P
$
can be chosen to be the base of the left branch to target all left-walls)
\item
$
u
$
destabilizes
$
v
$
going `inwards', that is,
\item
$
u
$
destabilizes
$
v
$
going `inwards', that is,
$
\nu
_{
\alpha
,
\beta
}
(
\pm
u
)
<
\nu
_{
\alpha
,
\beta
}
(
v
)
$
outside the pseudo-wall, and
$
\nu
_{
\alpha
,
\beta
}
(
u
)
<
\nu
_{
\alpha
,
\beta
}
(
v
)
$
outside the pseudo-wall, and
$
\nu
_{
\alpha
,
\beta
}
(
\pm
u
)
>
\nu
_{
\alpha
,
\beta
}
(
v
)
$
inside.
$
\nu
_{
\alpha
,
\beta
}
(
u
)
>
\nu
_{
\alpha
,
\beta
}
(
v
)
$
inside.
Where we use
$
+
u
$
or
$
-
u
$
depending on whether
$
(
\beta
,
\alpha
)
$
is on the left
or right (resp.) of
$
V
_
u
$
.
\end{enumerate}
\end{enumerate}
\egroup
\egroup
\noindent
\noindent
Then we have the following
:
are equivalent to the following more numerical conditions
:
\begin{enumerate}
\begin{enumerate}
\item
The pseudo-wall is left of
$
V
_
u
$
\item
$
u
$
has positive rank
(if this is a real wall then
$
v
$
is being semistabilized by an object with
\item
$
\beta
(
P
)
<
\mu
(
u
)
<
\mu
(
v
)
$
, i.e.
$
V
_
u
$
is strictly between
$
P
$
and
$
V
_
v
$
.
Chern character
$
u
$
, not
$
-
u
$
)
\item
$
\chern
_
1
^{
\beta
(
P
)
}
(
v
-
u
)
\geq
0
$
\item
$
\beta
(
P
)
<
\mu
(
u
)
<
\mu
(
v
)
$
, i.e.,
$
V
_
u
$
is strictly between
$
P
$
and
$
V
_
v
$
.
\item
$
\chern
_
2
^{
P
}
(
u
)
>
0
$
\item
$
\chern
_
2
^{
P
}
(
u
)
>
0
$
\end{enumerate}
\end{enumerate}
Furthermore, only the last two of these consequences are sufficient to recover
all of the suppositions above.
\end{lemma}
\end{lemma}
\begin{proof}
\begin{proof}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment