Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
4d2777ab
Commit
4d2777ab
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Introduce rank 0 case up to main lemma
parent
7bd81231
No related branches found
No related tags found
No related merge requests found
Pipeline
#29256
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+34
-6
34 additions, 6 deletions
main.tex
with
34 additions
and
6 deletions
main.tex
+
34
−
6
View file @
4d2777ab
...
...
@@ -289,8 +289,8 @@ Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we
define two characteristic curves on the
$
(
\alpha
,
\beta
)
$
-plane:
\begin{align*}
V
_
v
&
\colon
\chern
_
1
^{
\alpha
,
\beta
}
(v) = 0
\\
\Theta
_
v
&
\colon
\chern
_
2
^{
\alpha
,
\beta
}
(v) = 0
V
_
v
&
\colon
\:\:
\chern
_
1
^{
\alpha
,
\beta
}
(v) = 0
\\
\Theta
_
v
&
\colon
\:\:
\chern
_
2
^{
\alpha
,
\beta
}
(v) = 0
\end{align*}
\end{definition}
...
...
@@ -366,26 +366,49 @@ The following facts can be deduced from the formulae for $\chern_i^{\alpha, \bet
as well as the restrictions on
$
v
$
, when
$
\chern
_
0
(
v
)=
0
$
and
$
\chern
_
1
(
v
)
>
0
$
:
\begin{minipage}
{
0.
4
9
\textwidth
}
\begin{minipage}
{
0.
5
9
\textwidth
}
\begin{itemize}
\item
$
V
_
v
=
\emptyset
$
\item
$
\Theta
_
v
$
is a vertical line at
$
\beta
=
\frac
{
D
}{
C
}$
where
$
v
=
\left
(
0
,C
\ell
,D
\ell
^
2
\right
)
$
\end{itemize}
\end{minipage}
\begin{minipage}
{
0.49
\textwidth
}
\hfill
\begin{minipage}
{
0.39
\textwidth
}
\sageplot
[width=\textwidth]
{
Theta
_
v
_
plot
}
%\caption{$\Delta(v)>0$}
%\label{fig:charact_curves_rank0}
\end{minipage}
\end{fact}
We can view the characteristic curves for
$
\left
(
0
,C
\ell
, D
\ell
^
2
\right
)
$
with
$
C>
0
$
as
the limiting behaviour of those of
$
\left
(
\varepsilon
, C
\ell
, D
\ell
^
2
\right
)
$
.
Indeed:
\begin{align*}
\mu\left
(
\varepsilon
, C
\ell
, D
\ell
^
2
\right
) =
\frac
{
C
}{
\varepsilon
}
&
\longrightarrow
+
\infty
\\
\text
{
as
}
\:
0<
\varepsilon
&
\longrightarrow
0
\end{align*}
So we can view
$
V
_
v
$
as moving off infinitely to the right, with
$
\Theta
_
v
^
+
$
even further.
But also, considering the base point of
$
\Theta
_
v
^
-
$
:
\begin{align*}
\beta
_{
-
}
\left
(
\varepsilon
, C
\ell
, D
\ell
^
2
\right
) =
\frac
{
C -
\sqrt
{
C
^
2-2D
\varepsilon
}}{
\varepsilon
}
&
\longrightarrow
\frac
{
D
}{
C
}
\\
\text
{
as
}
\:\:
0<
\varepsilon
&
\longrightarrow
0
&
\text
{
(via L'H
\^
opital)
}
\end{align*}
So we can view
$
\Theta
_
v
^
-
$
as approaching the vertical line that
$
\Theta
_
v
$
becomes.
For this reason, I will refer to the whole of
$
\Theta
_
v
$
in the rank zero case
as
$
\Theta
_
v
^
-
$
to be able to use the same terminology in both positive rank
and rank zero cases.
\subsection
{
Relevance of
$
V
_
v
$}
\label
{
subsect:relevance-of-V
_
v
}
B
y definition of the first tilt
$
\firsttilt\beta
$
, objects of Chern character
For the positive rank case, b
y definition of the first tilt
$
\firsttilt\beta
$
, objects of Chern character
$
v
$
can only be in
$
\firsttilt\beta
$
on the left of
$
V
_
v
$
, where
$
\chern
_
1
^{
\alpha
,
\beta
}
(
v
)
>
0
$
, and objects of Chern character
$
-
v
$
can only be
in
$
\firsttilt\beta
$
on the right, where
$
\chern
_
1
^{
\alpha
,
\beta
}
(-
v
)
>
0
$
. In
...
...
@@ -396,6 +419,11 @@ Because of this, when using these characteristic curves, only positive ranks are
considered, as negative rank objects are implicitly considered on the right hand
side of
$
V
_
v
$
.
In the rank zero case, this still applies if we consider
$
V
_
v
$
to be
`infinitely to the right' (
$
\mu
(
v
)
=
+
\infty
$
). Precisely, Gieseker semistable
coherent sheaves
$
E
$
of Chern character
$
v
$
are contained in
$
\firsttilt
{
\beta
}$
for all
$
\beta
$
\subsection
{
Relevance of
$
\Theta
_
v
$}
...
...
@@ -406,7 +434,7 @@ $(\alpha$-$\beta)$-half-plane into regions where the signs of tilt slopes of
objects of Chern character
$
v
$
(or
$
-
v
$
) are fixed. Secondly, it gives more of a
fixed target for some
$
u
=(
r,c
\ell
,d
\frac
{
1
}{
2
}
\ell
^
2
)
$
to be a
pseudo-semistabilizer of
$
v
$
, in the following sense: If
$
(
\alpha
,
\beta
)
$
, is on
$
\Theta
_
v
$
, then for any
$
u
$
,
$
u
$
is
a pseudo-semistabilizer of
$
v
$
if
f
$
\Theta
_
v
$
, then for any
$
u
$
,
$
u
$
can only be
a pseudo-semistabilizer of
$
v
$
if
$
\nu
_{
\alpha
,
\beta
}
(
u
)=
0
$
, and hence
$
\chern
_
2
^{
\alpha
,
\beta
}
(
u
)=
0
$
. In fact,
this allows us to use the characteristic curves of some
$
v
$
and
$
u
$
(with
$
\Delta
(
v
)
,
\Delta
(
u
)
\geq
0
$
and positive ranks) to determine the location of
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment