Skip to content
Snippets Groups Projects
Commit 53ffe344 authored by Luke Naylor's avatar Luke Naylor
Browse files

Sort out statements and introduction leading up to bounds on d

parent 805b5419
No related branches found
No related tags found
No related merge requests found
......@@ -161,27 +161,8 @@ corresponding $\chern_1^{\beta}(u)$ fail one of the inequalities (which is what
was implicitly happening before in the proof of Theorem
\ref{thm:loose-bound-on-r}).
First, let us fix a Chern character $v$ with $\Delta(v)\geq 0$,
$\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$,
and some solution $u$ to the Problem
\ref{problem:problem-statement-1} or
\ref{problem:problem-statement-2}.
Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
\ref{problem:problem-statement-1}
(or $\beta_0 = \beta_{-}$ for problem \ref{problem:problem-statement-2}).
\begin{align}
\chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2)
&& \text{where $R,C\in \ZZ$ and $D\in \frac{1}{\lcm(m,2)}\ZZ$}
\nonumber
\\
u \coloneqq& \:(r,c\ell,d\ell^2)
&& \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$}
\label{eqn:u-coords}
\end{align}
\begin{lemma}
\label{lem:fixed-q-semistabs-criterion}
Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
and $\beta_{0}\coloneqq \beta(P)$ (or $\beta_{-}(v)$ resp.).
......@@ -214,6 +195,7 @@ Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
\end{proof}
\begin{corollary}
\label{cor:rational-beta:fixed-q-semistabs-criterion}
Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}),
and suppose that $\beta_{0}\coloneqq \beta(P)$ (or $\beta_{-}(v)$ resp.) is
rational, and written $\beta_0=\frac{a_v}{n}$ for
......@@ -248,11 +230,40 @@ Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
\subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems}
This section studies the numerical conditions that $u$ must satisfy as per
lemma \ref{lem:num_test_prob1}
(or corollary \ref{cor:num_test_prob2})
and reformulates them as bounds on $d$ from Equation \ref{eqn:u-coords}.
This is done to determine which $r$ values lead to no possible values for $d$.
Let $v$ be a Chern character with $\Delta(v)\geq 0$,
$\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$,
and consider Problem
\ref{problem:problem-statement-1} or
\ref{problem:problem-statement-2}.
Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem
\ref{problem:problem-statement-1}
(or $\beta_0 = \beta_{-}$ for problem \ref{problem:problem-statement-2}).
Lemma \ref{lem:fixed-q-semistabs-criterion} states that any solution
\[
u \coloneqq \:(r,c\ell,d\ell^2)
\qquad
\text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$}
\label{eqn:u-coords}
\]
to the Problem satisfies
\[
q \coloneqq \chern_1^{\beta_0}(u)
\in
\left(
0, \chern_1^{\beta_0}(v)
\right)
\]
and also gives a lower bound for $r$ when considering $u$ with a fixed $q$.
This Section studies the extra numerical conditions that such $u$ must satisfy
as per that Lemma, and will express them as bounds on $d$ in terms of $r$ (for a
fixed $q$).
These bounds will later be used in Subsections
\ref{subsec:bounds-on-semistab-rank-prob-1} and
\ref{subsec:bounds-on-semistab-rank-prob-2}
to construct upper bounds on $r$
(in a similar way to how a bound on $\chern_0(u)$ was found in the proof of
Theorem \ref{thm:loose-bound-on-r} by considering bounds on
$\chern^{\beta_0}_0(u)$ in terms of the former).
\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}}
\label{subsect-d-bound-radiuscond}
......@@ -594,6 +605,7 @@ A generic example of this is plotted in Figure
\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-1}}
\label{subsec:bounds-on-semistab-rank-prob-1}
As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1}
(and illustrated in Figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}),
......@@ -671,6 +683,7 @@ following Lemma \ref{lem:prob1:convenient_r_bound}.
\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem
\ref{problem:problem-statement-2}}
\label{subsec:bounds-on-semistab-rank-prob-2}
Now, the inequalities from the above subsubsection
\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment