Skip to content
Snippets Groups Projects
Commit 5548cffa authored by Luke Naylor's avatar Luke Naylor
Browse files

Clean up summary of bounds on d

parent 5d0e3b8c
No related branches found
No related tags found
No related merge requests found
......@@ -1327,10 +1327,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$
\end{align}
\egroup
Furthermore, we get an extra bound for $d$ resulting from the condition that the
radius of the circular wall must be positive. As discussed in (TODO ref), this
is equivalent to $\chern^{\beta}_2(E) > 0$, which yields:
\begin{sagesilent}
positive_radius_condition = (
(
......@@ -1340,13 +1336,7 @@ positive_radius_condition = (
.subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q
.expand()
)
\end{sagesilent}
\begin{equation}
\label{eqn:positive_rad_d_bound_betamin}
\sage{positive_radius_condition}
\end{equation}
\begin{sagesilent}
def beta_min(chern):
ts = stability.Tilt()
return min(
......@@ -1462,10 +1452,10 @@ weak lower bounds, (implying no possible destabilizers $E$ with
$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values).
This indeed happens in general since the right hand sides of
(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and
(eqn \ref{eqn:positive_rad_d_bound_betamin}) match when $q=0$.
(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$.
In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of
(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and
(eqn \ref{eqn:positive_rad_d_bound_betamin}) which match.
(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match.
The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$
......@@ -1480,7 +1470,7 @@ blue and green (ensuring $\Delta(E), \Delta(G) > 0$).
These lines have the same assymptote at $r \to \infty$
(eqns \ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:positive_rad_d_bound_betamin}).
\ref{eqn:radiuscond_d_bound_betamin}).
As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these
solutions is entirely determined by whether $\beta$ is rational or irrational.
Some of the details around the associated numerics are explored next.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment