Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
5548cffa
Commit
5548cffa
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Clean up summary of bounds on d
parent
5d0e3b8c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+3
-13
3 additions, 13 deletions
main.tex
with
3 additions
and
13 deletions
main.tex
+
3
−
13
View file @
5548cffa
...
...
@@ -1327,10 +1327,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$
\end{align}
\egroup
Furthermore, we get an extra bound for
$
d
$
resulting from the condition that the
radius of the circular wall must be positive. As discussed in (TODO ref), this
is equivalent to
$
\chern
^{
\beta
}_
2
(
E
)
>
0
$
, which yields:
\begin{sagesilent}
positive
_
radius
_
condition = (
(
...
...
@@ -1340,13 +1336,7 @@ positive_radius_condition = (
.subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q
.expand()
)
\end{sagesilent}
\begin{equation}
\label
{
eqn:positive
_
rad
_
d
_
bound
_
betamin
}
\sage
{
positive
_
radius
_
condition
}
\end{equation}
\begin{sagesilent}
def beta
_
min(chern):
ts = stability.Tilt()
return min(
...
...
@@ -1462,10 +1452,10 @@ weak lower bounds, (implying no possible destabilizers $E$ with
$
\chern
_
0
(
E
)=
\vcentcolon
r>R
\coloneqq\chern
_
0
(
F
)
$
for these
$
q
$
-values).
This indeed happens in general since the right hand sides of
(eqn
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
) and
(eqn
\ref
{
eqn:
positive
_
ra
d
_
d
_
bound
_
betamin
}
) match when
$
q
=
0
$
.
(eqn
\ref
{
eqn:
radiuscon
d
_
d
_
bound
_
betamin
}
) match when
$
q
=
0
$
.
In the other case,
$
q
=
\chern
^{
\beta
}_
1
(
F
)
$
, it is the right hand sides of
(eqn
\ref
{
eqn:bgmlv3
_
d
_
bound
_
betamin
}
) and
(eqn
\ref
{
eqn:
positive
_
ra
d
_
d
_
bound
_
betamin
}
) which match.
(eqn
\ref
{
eqn:
radiuscon
d
_
d
_
bound
_
betamin
}
) which match.
The more generic case, when
$
0
< q
\coloneqq\chern
_
1
^{
\beta
}
(
E
)
<
\chern
_
1
^{
\beta
}
(
F
)
$
...
...
@@ -1480,7 +1470,7 @@ blue and green (ensuring $\Delta(E), \Delta(G) > 0$).
These lines have the same assymptote at
$
r
\to
\infty
$
(eqns
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:bgmlv3
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:
positive
_
ra
d
_
d
_
bound
_
betamin
}
).
\ref
{
eqn:
radiuscon
d
_
d
_
bound
_
betamin
}
).
As mentioned in the introduction (sec
\ref
{
sec:intro
}
), the finiteness of these
solutions is entirely determined by whether
$
\beta
$
is rational or irrational.
Some of the details around the associated numerics are explored next.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment