Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
79f9d3fa
Commit
79f9d3fa
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Simplify expression in proof of theorem 6.1
parent
b5521d59
No related branches found
No related tags found
No related merge requests found
Pipeline
#27454
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+23
-20
23 additions, 20 deletions
main.tex
with
23 additions
and
20 deletions
main.tex
+
23
−
20
View file @
79f9d3fa
...
@@ -919,15 +919,18 @@ radius of the pseudo-wall being positive
...
@@ -919,15 +919,18 @@ radius of the pseudo-wall being positive
\begin{sagesilent}
\begin{sagesilent}
var("Delta", domain="real") # placeholder for the specific values of 1/epsilon
var("Delta", domain="real") # placeholder for the specific values of 1/epsilon
assymptote
_
gap
_
condition1 = (1/Delta < bgmlv2
_
d
_
upperbound
_
exp
_
term)
assymptote
_
gap
_
condition2 = (1/Delta < bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt2)
r
_
upper
_
bound1 = (
r
_
upper
_
bound1 = (
(1/Delta < bgmlv2
_
d
_
upperbound
_
exp
_
term)
assymptote
_
gap
_
condition1
* r * Delta
* r * Delta
)
)
assert r
_
upper
_
bound1.lhs() == r
assert r
_
upper
_
bound1.lhs() == r
r
_
upper
_
bound2 = (
r
_
upper
_
bound2 = (
(1/Delta < bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt2)
assymptote
_
gap
_
condition2
* (r-R) * Delta + R
* (r-R) * Delta + R
)
)
...
@@ -951,7 +954,6 @@ assert r_upper_bound2.lhs() == r
...
@@ -951,7 +954,6 @@ assert r_upper_bound2.lhs() == r
\sage
{
r
_
upper
_
bound2.rhs()
}
\sage
{
r
_
upper
_
bound2.rhs()
}
\right
)
\right
)
\end{align*}
\end{align*}
\egroup
Taking the maximum of this expression over
Taking the maximum of this expression over
$
q
\in
[
0
,
\chern
_
1
^{
\beta
}
(
F
)]
\cap
\frac
{
1
}{
n
}
\ZZ
$
$
q
\in
[
0
,
\chern
_
1
^{
\beta
}
(
F
)]
\cap
\frac
{
1
}{
n
}
\ZZ
$
...
@@ -967,12 +969,14 @@ are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
...
@@ -967,12 +969,14 @@ are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
So, if any of the two upper bounds on
$
d
$
come to within
So, if any of the two upper bounds on
$
d
$
come to within
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
$
d
$
.
$
d
$
.
Hence any corresponding
$
r
$
cannot be a rank of a
pseudo-semistabilizer for
$
v
$
.
Considering equations
To avoid this, we must have,
considering equations
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:bgmlv2
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:bgmlv3
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:bgmlv3
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:positive
_
rad
_
d
_
bound
_
betamin
}
,
\ref
{
eqn:positive
_
rad
_
d
_
bound
_
betamin
}
.
this happens when:
\bgroup
\bgroup
...
@@ -995,13 +999,16 @@ bounds_too_tight_condition2 = (
...
@@ -995,13 +999,16 @@ bounds_too_tight_condition2 = (
)
)
\end{sagesilent}
\end{sagesilent}
\bgroup
\def\psi
{
\chern
_
1
^{
\beta
}
(F)
}
\begin{equation}
\begin{equation}
\min\left
(
\min\left
(
\sage
{
bgmlv2
_
d
_
upperbound
_
exp
_
term
}
,
\sage
{
bgmlv2
_
d
_
upperbound
_
exp
_
term
}
,
\sage
{
bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt
.subs(chbv==0)
}
\sage
{
bgmlv3
_
d
_
upperbound
_
exp
_
term
_
alt
2
}
\right
)
\right
)
<
\epsilon
:=
\frac
{
1
}{
\lcm
(m,2n
^
2)
}
\geq
\epsilon
:=
\frac
{
1
}{
\lcm
(m,2n
^
2)
}
\end{equation}
\end{equation}
\egroup
\begin{sagesilent}
\begin{sagesilent}
# rearrange the "tightness" conditions in terms of r
# rearrange the "tightness" conditions in terms of r
...
@@ -1023,26 +1030,22 @@ assert bounds_too_tight_condition2.rhs() == r
...
@@ -1023,26 +1030,22 @@ assert bounds_too_tight_condition2.rhs() == r
\noindent
\noindent
This is equivalent to:
This is equivalent to:
\bgroup
\def\psi
{
\chern
_
1
^{
\beta
}
(F)
}
\def\Delta
{
\lcm
(m,2n
^
2)
}
\begin{equation}
\begin{equation}
r >
\label
{
eqn:thm-bound-for-r-impossible-cond-for-r
}
r
\leq
\min\left
(
\min\left
(
\sage
{
\sage
{
bounds
_
too
_
tight
_
condition1.lhs()
r
_
upper
_
bound1.rhs()
.expand()
.factor()
}
,
}
,
\sage
{
\sage
{
bounds
_
too
_
tight
_
condition2.lhs()
r
_
upper
_
bound2.rhs()
.expand()
.factor()
}
}
\right
)
\right
)
\end{equation}
\end{equation}
\egroup
If this condition holds for all
$
q
$
, then there are no solutions for
$
d
$
,
and therefore
$
r
$
cannot satisfy this condition for all
$
q
$
.
Taking the maximum of all these expressions over
$
q
$
, and substituting the value
for
$
\epsilon
$
gives the result.
\egroup
% end scope where epsilon redefined
\egroup
% end scope where epsilon redefined
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment