Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
7e02219e
Commit
7e02219e
authored
3 months ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Complete first pass of corrections on chapter 3
parent
1a27cd54
No related branches found
No related tags found
No related merge requests found
Pipeline
#48870
failed
3 months ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tex/setting-and-problems.tex
+16
-9
16 additions, 9 deletions
tex/setting-and-problems.tex
with
16 additions
and
9 deletions
tex/setting-and-problems.tex
+
16
−
9
View file @
7e02219e
...
...
@@ -29,6 +29,12 @@ affect the results.
\end{itemize}
\end{definition}
\begin{remark}
We could introduce a slightly stronger definition including an extra condition on
$
e
$
in terms of
$
r
$
and
$
c
$
to ensure that
$
u
$
could arise from integral Chern classes.
However, this will not affect finiteness questions considered later and this also
condition turns out to be vacuous for principally polarised abelian surfaces.
\end{remark}
\begin{remark}
Note
$
u
$
does not need to be a Chern character of an actual sub-object of some
object in the stability condition's heart with Chern character
$
v
$
.
...
...
@@ -65,9 +71,10 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$.
\label
{
lem:sanity-check-for-pseudo-semistabilizers
}
Given a stability
condition
$
\sigma
_{
\alpha
,
\beta
}$
,
if
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
is a semistabilising sequence in
$
\firsttilt\beta
$
for
$
F
$
.
Then
$
\chern
(
E
)
$
is a pseudo-semistabiliser of
$
\chern
(
F
)
$
and a semistabilising sequence
$
E
\hookrightarrow
F
\twoheadrightarrow
G
$
in
$
\firsttilt\beta
$
for
$
F
$
,
then
$
\chern
(
E
)
$
is a pseudo-semistabiliser of
$
\chern
(
F
)
$
\end{lemma}
\begin{proof}
...
...
@@ -368,8 +375,8 @@ Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0)
and
$
\Delta
(
v
)
\geq
0
$
.
The goal is to find all pseudo-semistabilisers
$
u
$
which give circular pseudo-walls containing some fixed point
$
P
\in\Theta
_
v
^
-
$
.
W
ith the added restriction that
$
u
$
`destabilises'
$
v
$
moving `inwards', that is,
$
P
\in\Theta
_
v
^
-
$
w
ith the added restriction that
$
u
$
`destabilises'
$
v
$
moving `inwards', that is,
$
\nu
(
u
)
>
\nu
(
v
)
$
inside the circular pseudo-wall.
\end{problem}
This will give all pseudo-walls between the chamber corresponding to Gieseker
...
...
@@ -438,8 +445,8 @@ problem using Lemma \ref{lem:pseudo_wall_numerical_tests}.
and
$
\Delta
(
v
)
\geq
0
$
,
and a choice of point
$
P
=(
\alpha
_
0
,
\beta
_
0
)
$
on
$
\Theta
_
v
^
-
$
.
Solutions
$
u
=(
r,c
\ell
,d
\ell
^
2
)
$
to Problem
\ref
{
problem:problem-statement-1
}
.
A
re precisely given by
$
r,c
\in
\ZZ
$
,
$
d
\in
\frac
{
1
}{
\lcm
(
m,
2
)
}$
to Problem
\ref
{
problem:problem-statement-1
}
a
re precisely given by
$
r,c
\in
\ZZ
$
,
$
d
\in
\frac
{
1
}{
\lcm
(
m,
2
)
}$
satisfying the following conditions:
\begin{enumerate}
\begin{multicols}
{
2
}
...
...
@@ -479,8 +486,8 @@ problem using Lemma \ref{lem:pseudo_wall_numerical_tests}.
and
$
\Delta
(
v
)
\geq
0
$
,
such that
$
\beta
_{
-
}
\coloneqq\beta
_{
-
}
(
v
)
\in
\QQ
$
.
Solutions
$
u
=(
r,c
\ell
,d
\ell
^
2
)
$
to Problem
\ref
{
problem:problem-statement-2
}
.
A
re precisely given by
$
r,c
\in
\ZZ
$
,
$
d
\in\frac
{
1
}{
\lcm
(
m,
2
)
}
\ZZ
$
satisfying
to Problem
\ref
{
problem:problem-statement-2
}
a
re precisely given by
$
r,c
\in
\ZZ
$
,
$
d
\in\frac
{
1
}{
\lcm
(
m,
2
)
}
\ZZ
$
satisfying
the following conditions:
\begin{enumerate}
\begin{multicols}
{
2
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment