Skip to content
Snippets Groups Projects
Commit 9a91722e authored by Luke Naylor's avatar Luke Naylor
Browse files

Correct corrolary to corollary

parent 695797b0
No related branches found
No related tags found
No related merge requests found
......@@ -33,7 +33,7 @@ sorting=ynt
\newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corrolary}{Corrolary}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{example}{Example}[section]
......@@ -730,7 +730,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\end{proof}
\begin{corrolary}[Numerical Tests for All `left' Pseudo-walls]
\begin{corollary}[Numerical Tests for All `left' Pseudo-walls]
\label{cor:num_test_prob2}
Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$,
such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$.
......@@ -750,7 +750,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
\item $\chern_2^{\beta_{-}}(u)>0$
\label{item:radiuscond:lem:num_test_prob2}
\end{enumerate}
\end{corrolary}
\end{corollary}
\begin{proof}
This is a specialization of the previous lemma, using $P=(\beta_{-},0)$.
......@@ -996,7 +996,7 @@ u = Chern_Char(*var("r c d", domain="real"))
Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:num_test_prob2})
(or corollary \ref{cor:num_test_prob2})
that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
and so we can write:
......@@ -1030,7 +1030,7 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
This section studies the numerical conditions that $u$ must satisfy as per
lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:num_test_prob2})
(or corollary \ref{cor:num_test_prob2})
\subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ }
\label{subsect-d-bound-radiuscond}
......@@ -1038,7 +1038,7 @@ lemma \ref{lem:num_test_prob1}
This condition refers to condition
\ref{item:radiuscond:lem:num_test_prob1}
from lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:num_test_prob2}).
(or corollary \ref{cor:num_test_prob2}).
In the case where we are tackling problem \ref{problem:problem-statement-2}
(with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$,
......@@ -1061,7 +1061,7 @@ amounts to:
This condition refers to condition
\ref{item:bgmlvu:lem:num_test_prob1}
from lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:num_test_prob2}).
(or corollary \ref{cor:num_test_prob2}).
\begin{sagesilent}
......@@ -1089,7 +1089,7 @@ bgmlv2_with_q = (
\noindent
This can be rearranged to express a bound on $d$ as follows
(recall from condition \ref{item:rankpos:lem:num_test_prob1}
in lemma \ref{lem:num_test_prob1} or corrolary
in lemma \ref{lem:num_test_prob1} or corollary
\ref{cor:num_test_prob2} that $r>0$):
\begin{sagesilent}
......@@ -1156,7 +1156,7 @@ for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}.
This condition refers to condition
\ref{item:bgmlvv-u:lem:num_test_prob1}
from lemma \ref{lem:num_test_prob1}
(or corrolary \ref{cor:num_test_prob2}).
(or corollary \ref{cor:num_test_prob2}).
Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on
$d$ yields:
......@@ -1297,7 +1297,7 @@ $d=\chern^{\beta_{-}}_2(u)$ induced by conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob1}
from corrolary \ref{cor:num_test_prob2} have the same constant and linear
from corollary \ref{cor:num_test_prob2} have the same constant and linear
terms in $r$, but different hyperbolic terms.
These give bounds with the same assymptotes when we take $r\to\infty$
(for any fixed $q=\chern_1^{\beta_{-}}(u)$).
......@@ -1685,7 +1685,7 @@ r_upper_bound_all_q = (
)
\end{sagesilent}
\begin{corrolary}[Bound on $r$ \#2]
\begin{corollary}[Bound on $r$ \#2]
\label{cor:direct_rmax_with_uniform_eps}
Let $v$ be a fixed Chern character and
$R\coloneqq\chern_0(v) \leq n^2\Delta(v)$.
......@@ -1700,7 +1700,7 @@ r_upper_bound_all_q = (
\sage{r_upper_bound_all_q.expand()}
\end{equation*}
\egroup
\end{corrolary}
\end{corollary}
\begin{proof}
\bgroup
......@@ -1749,7 +1749,7 @@ corrolary_bound = (
.subs(n==recurring.n)
)
\end{sagesilent}
Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilizers for $v$ are bounded above by
$\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$,
which is much closer to real maximum 25 than the original bound 144.
......@@ -1772,7 +1772,7 @@ corrolary_bound = (
.subs(n==extravagant.n)
)
\end{sagesilent}
Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilizers for $v$ are bounded above by
$\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$,
which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment