Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
a579508c
Commit
a579508c
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Start leading onto part with tighter bounds
parent
0284ecd0
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#27019
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+44
-20
44 additions, 20 deletions
main.tex
with
44 additions
and
20 deletions
main.tex
+
44
−
20
View file @
a579508c
...
...
@@ -23,7 +23,7 @@
\newcommand
{
\centralcharge
}{
\mathcal
{
Z
}}
\newcommand
{
\minorheading
}
[1]
{{
\noindent\normalfont\normalsize\bfseries
#1
}}
\newtheorem
{
rmax
_
with
_
uniform
_
eps
}{
Theorem
}
[section]
\newtheorem
{
theorem
}{
Theorem
}
[section]
\begin{document}
...
...
@@ -787,6 +787,13 @@ Some of the details around the associated numerics are explored next.
The strategy here is similar to what was shown in (sect
\ref
{
sec:twisted-chern
}
),
% ref to Schmidt?
\begin{sagesilent}
var("a
_
F b
_
q n") # Define symbols introduce for values of beta and q
beta
_
value
_
expr = (beta == a
_
F/n)
q
_
value
_
expr = (q == b
_
q/n)
\end{sagesilent}
\renewcommand
{
\aa
}{{
a
_
F
}}
\newcommand
{
\bb
}{{
b
_
q
}}
Suppose
$
\beta
=
\frac
{
\aa
}{
n
}$
for some coprime
$
n
\in
\NN
,
\aa
\in
\ZZ
$
.
...
...
@@ -799,23 +806,6 @@ Then fix a value of $q$:
\cap
[0,
\chern
_
1
^{
\beta
}
(F)]
\end{equation}
as noted at the beginning of this section (
\ref
{
sec:refinement
}
).
Firstly, we only consider
$
r
$
-values for which
$
c:
=
\chern
_
1
(
E
)
$
is integral:
\begin{sagesilent}
var("a
_
F b
_
q n") # Define symbols introduce for values of beta and q
beta
_
value
_
expr = (beta == a
_
F/n)
q
_
value
_
expr = (q == b
_
q/n)
\end{sagesilent}
\begin{equation}
c =
\sage
{
c
_
in
_
terms
_
of
_
q.subs([q
_
value
_
expr,beta
_
value
_
expr])
}
\in
\ZZ
\end{equation}
\noindent
That is,
$
r
\equiv
-
\aa
^{
-
1
}
\bb
$
mod
$
n
$
(
$
\aa
$
is coprime to
$
n
$
, and so invertible mod
$
n
$
).
Substituting the current values of
$
q
$
and
$
\beta
$
into the condition for the
radius of the pseudo-wall being positive
...
...
@@ -832,7 +822,8 @@ radius of the pseudo-wall being positive
\frac
{
1
}{
2n
^
2
}
\ZZ
\end{equation}
\begin{rmax_with_uniform_eps}
[Bound on
$
r
$
\#
1]
\begin{theorem}
[Bound on
$
r
$
\#
1]
\label
{
thm:rmax
_
with
_
uniform
_
eps
}
Let
$
v
=
(
R,C,D
)
$
be a fixed Chern character. Then the ranks of the
pseudo-semistabilizers for
$
v
$
are bounded above by the following expression.
...
...
@@ -853,7 +844,7 @@ radius of the pseudo-wall being positive
\right
)
\right\}
\end{align*}
\end{
rmax_with_uniform_eps
}
\end{
theorem
}
\begin{proof}
...
...
@@ -945,8 +936,41 @@ for $\epsilon$ gives the result.
\end{proof}
%% TODO simplified expression for rmax by predicting which q gives rmax
%% refinements using specific values of q and beta
This bound can be refined a bit more by considering restrictions from the
possible values that
$
r
$
take.
Furthermore, the proof of theorem
\ref
{
thm:rmax
_
with
_
uniform
_
eps
}
uses the fact
that, given an element of
$
\frac
{
1
}{
2
n
^
2
}
\ZZ
$
, the closest non-equal element of
$
\frac
{
1
}{
m
}
\ZZ
$
is at least
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
away. However this a
conservative estimate, and a larger gap can sometimes be guaranteed if we know
this value of
$
\frac
{
1
}{
2
n
^
2
}
\ZZ
$
explicitly.
The expressions that will follow will be a bit more complicated and have more
parts which depend on the values of
$
q
$
and
$
\beta
$
, even their numerators
$
\aa
,
\bb
$
specifically. The upcoming theorem (TODO ref) is less useful as a
`nice' formula for a bound on the ranks of the pseudo-semistabilizers, but has a
purpose in the context of writing a computer program to find
pseudo-semistabilizers. Such a program would iterate through possible values of
$
q
$
, then iterate through values of
$
r
$
within the bounds (dependent on
$
q
$
),
which would then determine
$
c
$
, and then find the corresponding possible values
for
$
d
$
.
Firstly, we only consider
$
r
$
-values for which
$
c:
=
\chern
_
1
(
E
)
$
is integral:
\begin{equation}
c =
\sage
{
c
_
in
_
terms
_
of
_
q.subs([q
_
value
_
expr,beta
_
value
_
expr])
}
\in
\ZZ
\end{equation}
\noindent
That is,
$
r
\equiv
-
\aa
^{
-
1
}
\bb
$
mod
$
n
$
(
$
\aa
$
is coprime to
$
n
$
, and so invertible mod
$
n
$
).
\begin{sagesilent}
rhs
_
numerator = (
positive
_
radius
_
condition
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment