Skip to content
Snippets Groups Projects
Commit c9f611fb authored by Luke Naylor's avatar Luke Naylor
Browse files

Rename sage variables for better documentation

parent 64f10124
No related branches found
No related tags found
No related merge requests found
...@@ -165,12 +165,12 @@ $\chern(F)$, and so we can write: ...@@ -165,12 +165,12 @@ $\chern(F)$, and so we can write:
c_lower_bound = -(ts(beta=beta_min).rank(u)/ts().alpha).expand() + c c_lower_bound = -(ts(beta=beta_min).rank(u)/ts().alpha).expand() + c
var("q", domain="real") var("q", domain="real")
c_val = c_lower_bound + q c_in_terms_of_q = c_lower_bound + q
\end{sagesilent} \end{sagesilent}
\begin{equation} \begin{equation}
\label{eqn-cintermsofm} \label{eqn-cintermsofm}
c=\chern_1(E) = \sage{c_val} c=\chern_1(E) = \sage{c_in_terms_of_q}
\qquad 0 \leq q \leq \chern_1^{\beta_{-}}(F) \qquad 0 \leq q \leq \chern_1^{\beta_{-}}(F)
\end{equation} \end{equation}
...@@ -185,11 +185,11 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. ...@@ -185,11 +185,11 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: This condition expressed in terms of $R,C,D,r,c,d$ looks as follows:
\begin{sagesilent} \begin{sagesilent}
positive_condition = - u.Q_tilt() - (v-u).Q_tilt() + v.Q_tilt() bgmlv1 = - u.Q_tilt() - (v-u).Q_tilt() + v.Q_tilt()
\end{sagesilent} \end{sagesilent}
\begin{equation} \begin{equation}
\sage{(0 <= positive_condition.expand() )} \sage{0 <= bgmlv1.expand() }
\end{equation} \end{equation}
...@@ -198,11 +198,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) ...@@ -198,11 +198,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm})
we get the following: we get the following:
\begin{sagesilent} \begin{sagesilent}
positive_condition = positive_condition.expand().subs(c == c_val) bgmlv1_with_q = bgmlv1.expand().subs(c == c_in_terms_of_q)
\end{sagesilent} \end{sagesilent}
\begin{equation} \begin{equation}
\sage{(0 <= positive_condition) + 2*R*d - 4*d*r} \sage{0 <= bgmlv1_with_q}
\end{equation} \end{equation}
...@@ -210,14 +210,16 @@ we get the following: ...@@ -210,14 +210,16 @@ we get the following:
This can be rearranged to express a bound on $d$ as follows: This can be rearranged to express a bound on $d$ as follows:
\begin{sagesilent} \begin{sagesilent}
var("r_alt",domain="real") var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution
nc = (positive_condition.subs(r == r_alt + R/2)/r_alt).expand() bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt + R/2)/r_alt).expand()
nc = ((0 > -nc) + 4*d)/4 # rearrange for d bgmlv1_d_ineq = ((0 > -bgmlv1_with_q_reparam) + 4*d)/4 # Rearrange for d
nc = nc.subs(r_alt == r - R/2).expand() # resubs r back in bgmlv1_d_ineq = bgmlv1_d_ineq.subs(r_alt == r - R/2).expand() # Resubstitute r back in
bgmlv1_d_lowerbound = bgmlv1_d_ineq.rhs() # Keep hold of lower bound for d
\end{sagesilent} \end{sagesilent}
\begin{dmath} \begin{dmath}
\sage{nc} \sage{bgmlv1_d_ineq}
\end{dmath} \end{dmath}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment