Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
d22fec8d
Commit
d22fec8d
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Reformat result into a theorem
parent
7b1eb085
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#27017
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+40
-1
40 additions, 1 deletion
main.tex
with
40 additions
and
1 deletion
main.tex
+
40
−
1
View file @
d22fec8d
...
...
@@ -23,6 +23,8 @@
\newcommand
{
\centralcharge
}{
\mathcal
{
Z
}}
\newcommand
{
\minorheading
}
[1]
{{
\noindent\normalfont\normalsize\bfseries
#1
}}
\newtheorem
{
rmax
_
with
_
uniform
_
eps
}{
Theorem
}
[section]
\begin{document}
\title
{
Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and
...
...
@@ -829,8 +831,35 @@ radius of the pseudo-wall being positive
\frac
{
1
}{
2n
^
2
}
\ZZ
\end{equation}
\begin{rmax_with_uniform_eps}
[Bound on
$
r
$
\#
1]
Let
$
v
=
(
R,C,D
)
$
be a fixed Chern character. Then the ranks of the
pseudo-semistabilizers for
$
v
$
are bounded above by the following expression.
\begin{align*}
&
\frac
{
\lcm
(m,2n
^
2)
}{
2
}
\max
_{
q
\in
[0,
\chern
_
1
^
\beta
(v)]
}
\\
&
\left\{
\min
\left
(
q
^
2,
2R
\beta
q
+C
^
2
-2DR
-2Cq
+q
^
2
+
\frac
{
R
}{
\lcm
(m,2n
^
2)
}
\right
)
\right\}
\end{align*}
\end{rmax_with_uniform_eps}
\begin{proof}
\noindent
Both
$
d
$
and the lower bound are elements of
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}
\ZZ
$
.
Both
$
d
$
and the lower bound in
(eqn
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
)
are elements of
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}
\ZZ
$
.
So, if any of the two upper bounds on
$
d
$
come to within
$
\frac
{
1
}{
\lcm
(
m,
2
n
^
2
)
}$
of this lower bound, then there are no solutions for
$
d
$
.
...
...
@@ -887,6 +916,9 @@ assert bounds_too_tight_condition1.rhs() == r
assert bounds
_
too
_
tight
_
condition2.rhs() == r
\end{sagesilent}
\noindent
This is equivalent to:
\begin{equation}
r >
\min\left
(
...
...
@@ -903,6 +935,13 @@ assert bounds_too_tight_condition2.rhs() == r
\right
)
\end{equation}
If this condition holds for all
$
q
$
, then there are no solutions for
$
d
$
,
and therefore
$
r
$
cannot satisfy this condition for all
$
q
$
.
Taking the maximum of all these expressions over
$
q
$
, and substituting the value
for
$
\epsilon
$
gives the result.
\end{proof}
%% refinements using specific values of q and beta
\begin{sagesilent}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment