Skip to content
Snippets Groups Projects
Commit d3819e94 authored by Luke Naylor's avatar Luke Naylor
Browse files

Bound for rank

parent f12e230c
No related branches found
No related tags found
No related merge requests found
...@@ -9,7 +9,10 @@ ...@@ -9,7 +9,10 @@
\usepackage{color} \usepackage{color}
\newcommand{\QQ}{\mathbb{Q}} \newcommand{\QQ}{\mathbb{Q}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\chern}{\operatorname{ch}} \newcommand{\chern}{\operatorname{ch}}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gcd}{\operatorname{gcd}}
\newcommand{\firsttilt}[1]{\mathcal{B}^{#1}} \newcommand{\firsttilt}[1]{\mathcal{B}^{#1}}
\newcommand{\bddderived}{\mathcal{D}^{b}} \newcommand{\bddderived}{\mathcal{D}^{b}}
\newcommand{\centralcharge}{\mathcal{Z}} \newcommand{\centralcharge}{\mathcal{Z}}
...@@ -84,6 +87,8 @@ $\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$: ...@@ -84,6 +87,8 @@ $\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$:
\chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E)
\end{align*} \end{align*}
% TODO I think this^ needs adjusting for general Surface with $\ell$
$\chern^\beta_1(E)$ is the imaginary component of the central charge $\chern^\beta_1(E)$ is the imaginary component of the central charge
$\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ $\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$
satisfies $\chern^\beta_1 \geq 0$. This, along with additivity gives us, for any satisfies $\chern^\beta_1 \geq 0$. This, along with additivity gives us, for any
...@@ -101,7 +106,7 @@ normal one. So $0 \leq \Delta(E)$ yields: ...@@ -101,7 +106,7 @@ normal one. So $0 \leq \Delta(E)$ yields:
\begin{equation} \begin{equation}
\label{eqn-bgmlv-on-E} \label{eqn-bgmlv-on-E}
\chern^\beta_0(E) \chern^\beta_2(E) \leq \left(\chern^\beta_1(E)\right)^2 2\chern^\beta_0(E) \chern^\beta_2(E) \leq \left(\chern^\beta_1(E)\right)^2
\end{equation} \end{equation}
The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$ The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$
...@@ -109,6 +114,20 @@ is best seen with the following graph: ...@@ -109,6 +114,20 @@ is best seen with the following graph:
% TODO: hyperbola restriction graph (shaded) % TODO: hyperbola restriction graph (shaded)
This is where the $\beta_{-}$ criterion comes in. If $\beta_{-} = \frac{*}{n}$
for some $*,n \in \ZZ$.
Then $\chern^\beta_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$ where $m$ is the integer
which guarantees $\chern_2(E) \in \frac{1}{m}\ZZ$ (determined by the variety).
In particular, since $\chern_2(E) > 0$ we must also have
$\chern^\beta_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a bound
for the rank of $E$:
\begin{align}
\chern_0(E) &= \chern^\beta_0(E) \\
&\leq \frac{\lcm(m,2n^2) \chern^\beta_1(E)^2}{2} \\
&\leq \frac{mn^2 \chern^\beta_1(F)^2}{\gcd(m,2n^2)}
\end{align}
\section{Section 3} \section{Section 3}
\section{Conclusion} \section{Conclusion}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment