Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Max Destabilizer Rank
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
luke naylor latex documents
research
Max Destabilizer Rank
Commits
d4910357
Commit
d4910357
authored
1 year ago
by
Luke Naylor
Browse files
Options
Downloads
Patches
Plain Diff
Correct recent work related to modular arithmetic
parent
49a9eedb
No related branches found
No related tags found
No related merge requests found
Pipeline
#27037
passed
1 year ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main.tex
+37
-28
37 additions, 28 deletions
main.tex
with
37 additions
and
28 deletions
main.tex
+
37
−
28
View file @
d4910357
...
@@ -951,7 +951,7 @@ this value of $\frac{1}{2n^2}\ZZ$ explicitly.
...
@@ -951,7 +951,7 @@ this value of $\frac{1}{2n^2}\ZZ$ explicitly.
The expressions that will follow will be a bit more complicated and have more
The expressions that will follow will be a bit more complicated and have more
parts which depend on the values of
$
q
$
and
$
\beta
$
, even their numerators
parts which depend on the values of
$
q
$
and
$
\beta
$
, even their numerators
$
\aa
,
\bb
$
specifically. The upcoming theorem (TODO ref) is less useful as a
$
\aa
,
\bb
$
specifically. The upcoming theorem (TODO ref) is less useful as a
`
nice
' formula for a bound on the ranks of the pseudo-semistabilizers, but has a
`
clean
' formula for a bound on the ranks of the pseudo-semistabilizers, but has a
purpose in the context of writing a computer program to find
purpose in the context of writing a computer program to find
pseudo-semistabilizers. Such a program would iterate through possible values of
pseudo-semistabilizers. Such a program would iterate through possible values of
$
q
$
, then iterate through values of
$
r
$
within the bounds (dependent on
$
q
$
),
$
q
$
, then iterate through values of
$
r
$
within the bounds (dependent on
$
q
$
),
...
@@ -959,7 +959,8 @@ which would then determine $c$, and then find the corresponding possible values
...
@@ -959,7 +959,8 @@ which would then determine $c$, and then find the corresponding possible values
for
$
d
$
.
for
$
d
$
.
Firstly, we only consider
$
r
$
-values for which
$
c:
=
\chern
_
1
(
E
)
$
is integral:
Firstly, we only need to consider
$
r
$
-values for which
$
c:
=
\chern
_
1
(
E
)
$
is
integral:
\begin{equation}
\begin{equation}
c =
c =
...
@@ -982,24 +983,9 @@ rhs_numerator = (
...
@@ -982,24 +983,9 @@ rhs_numerator = (
\end{sagesilent}
\end{sagesilent}
\noindent
\noindent
Considering the numerator of the right-hand-side of
Let
$
\aa
^{
'
}$
be an integer representative of
$
\aa
^{
-
1
}$
in
$
\ZZ
/
n
\ZZ
$
.
(eqn
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
):
\begin{align}
Considering the following tautology:
\sage
{
rhs
_
numerator
}
&
\equiv
(
\aa
(-
\aa
^{
-1
}
\bb
)+2
\bb
)
\aa
&
\mod
n
\\
&
\equiv
\aa\bb
&
\mod
n
\end{align}
\noindent
And so, we also have
$
\aa
(
\aa
r
+
2
\bb
)
\equiv
\aa\bb
$
(mod
$
2
n
^
2
$
).
Now, suppose that
$
x
/
m
$
is the smallest element of
$
\frac
{
1
}{
m
}
\ZZ
$
strictly
greater than the right-hand-side of
(eqn
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
), and define
$
\epsilon
$
as the size of the gap.
Using the following tautology:
\begin{align}
\begin{align}
&
\frac
{
x
}{
m
}
&
\frac
{
x
}{
m
}
...
@@ -1009,25 +995,48 @@ Using the following tautology:
...
@@ -1009,25 +995,48 @@ Using the following tautology:
2n
^
2
2n
^
2
}
}
=
\frac
{
k
}{
2mn
^
2
}
=
\frac
{
k
}{
2mn
^
2
}
\quad
\text
{
for some
}
x
\in
\ZZ
\quad
\text
{
for some
}
x
\in
\ZZ
, k
\in
\ZZ
_{
>0
}
\label
{
eqn:finding
_
better
_
eps
_
problem
}
\\
&
\iff
\\
&
\iff
- (
\aa
r+2
\bb
)
\aa
m
- (
\aa
r+2
\bb
)
\aa
m
\equiv
k
\equiv
k
\quad
\mod
2n
^
2
\quad
\mod
2n
^
2
\quad
\text
{
for some
}
k
\in
\ZZ
_{
>0
}
\\
&
\iff
\\
&
\iff
-
\aa\bb
m
-
\aa
^
2 m r - 2
\aa\bb
m
\equiv
k
\equiv
k
\quad
\mod
2n
^
2
\quad
\mod
2n
^
2
\quad
\text
{
for some
}
k
\in
\ZZ
_{
>0
}
\\
&
\Longrightarrow
\aa
^
2
\aa
^{
'
}
\bb
m - 2
\aa\bb
m
\equiv
k
\quad
\mod
\gcd
(2n
^
2,
\aa
^
2 mn)
\quad
\text
{
for some
}
k
\in
\ZZ
_{
>0
}
\label
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
gcd2n2
_
a2mn
}
\\
&
\Longrightarrow
-
\aa\bb
m
\equiv
k
\quad
\mod
n
\quad
\text
{
for some
}
k
\in
\ZZ
_{
>0
}
\label
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
n
}
\end{align}
\end{align}
We can recover how much greater
$
x
/
m
$
is than the right-hand-side of
In our situation, we want to find the gap between the right-hand-side of eqn
(eqn
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
).
\ref
{
eqn:positive
_
rad
_
condition
_
in
_
terms
_
of
_
q
_
beta
}
,
First calculate the smallest
$
k
_
q
\in
\ZZ
_{
>
0
}$
, such that
and the least element of
$
\frac
{
1
}{
m
}
\ZZ
$
which is strictly greater.
$
k
_
q
\equiv
-
\aa\bb
m
\mod
2
n
^
2
$
. Then we have
This amounts to finding the least
$
k
\in
\ZZ
_{
>
0
}$
for which
$
\epsilon
=
\epsilon
_
q :
=
\frac
{
k
_
q
}{
2
mn
^
2
}$
,
eqn
\ref
{
eqn:finding
_
better
_
eps
_
problem
}
holds.
an expression independent of
$
x
$
and
$
r
$
, only depending on
$
q
$
.
Since such a
$
k
$
satisfies eqn
\ref
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
n
}
,
we can pick the smallest
$
k
\in
\ZZ
_{
>
0
}$
which satisfies this new condition
(a computation only depending on
$
q
$
and
$
\beta
$
, but not
$
r
$
)
and we are then guaranteed that the gap is at least
$
\frac
{
k
}{
2
mn
^
2
}$
.
A potentially larger gap can also be guaranteed if we choose the least
$
k
\in
\ZZ
_{
>
0
}$
satisfying eqn
\ref
{
eqn:better
_
eps
_
problem
_
k
_
mod
_
gcd2n2
_
a2mn
}
instead, but at the cost of computing several
$
\gcd
$
's and modulo reductions
for each
$
q
$
considered.
%% TODO: check this^ result seems a bit strange
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment