Skip to content
Snippets Groups Projects
Commit dc237ada authored by Luke Naylor's avatar Luke Naylor
Browse files

First of the recurring examples for 3,2l,-2

parent 33b1ac28
No related branches found
No related tags found
1 merge request!1Draft: Resolve "Running example (3, 2l, -4)"
......@@ -16,6 +16,7 @@
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\chern}{\operatorname{ch}}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\firsttilt}[1]{\mathcal{B}^{#1}}
......@@ -29,6 +30,7 @@
\newtheorem{dfn}{Definition}[section]
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{example}{Example}[section]
\begin{document}
......@@ -40,6 +42,16 @@ from pseudowalls import *
Δ = lambda v: v.Q_tilt()
mu = stability.Mumford().slope
def beta_minus(v):
beta = stability.Tilt().beta
solutions = solve(
stability.Tilt(alpha=0).degree(v)==0,
beta)
return min(map(lambda s: s.rhs(), solutions))
class Object(object):
pass
\end{sagesilent}
\title{Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and
......@@ -471,6 +483,7 @@ normal one. So $0 \leq \Delta(E)$ yields:
\end{equation}
\begin{theorem}[Bound on $r$ - Benjamin Schmidt]
\label{thm:loose-bound-on-r}
Given a Chern character $v$ such that $\beta_-:=\beta_{-}(v)\in\QQ$, the rank $r$ of
any semistabilizer $E$ of some $F \in \firsttilt{\beta_-}$ with $\chern(F)=v$ is
bounded above by:
......@@ -507,6 +520,32 @@ bound for the rank of $E$:
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\begin{sagesilent}
recurring = Object()
recurring.chern = Chern_Char(3, 2, -2)
recurring.b = beta_minus(recurring.chern)
recurring.twisted = recurring.chern.twist(recurring.b)
\end{sagesilent}
Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta_-=\sage{recurring.b}$,
giving $n=\sage{recurring.b.denominator()}$ and
$\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$.
\begin{sagesilent}
n = recurring.b.denominator()
m = 2
loose_bound = (
m*n^2*recurring.twisted.ch[1]^2
) / gcd(m, 2*n^2)
\end{sagesilent}
Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of
tilt semistabilizers for $v$ are bounded above by $\sage{loose_bound}$.
However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum
rank that appears turns out to be 25. This will be a recurring example to
illustrate the performance of later theorems about rank bounds
\end{example}
\section{B.Schmidt's Method}
Goals:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment