Newer
Older
from argparse import ArgumentParser
import torch
import argparse
def pargs():
parser = argparse.ArgumentParser(description='')
#model
parser.add_argument("-base_model",default="bert-base-uncased",help="huggingface model to use." )
parser.add_argument("-esz",default=300,type=int,help="embedding size")
parser.add_argument("-glove",action="store_true",help="use glove embeddings")
parser.add_argument("-hsz",default=300,type=int,help="hidden state size")
parser.add_argument("-drop",default=0.1,type=float,help="dropout rate")
parser.add_argument("-ckpt", type=str,help="load from checkpoint")
parser.add_argument("-model", default='crossencoder', help='choose model')
parser.add_argument("-knowledge", default='none', type=str, help='knowledge source')
# training and loss
parser.add_argument("-bsz",default=64,type=int)
parser.add_argument("-epochs",default=20,type=int)
parser.add_argument("-clip",default=1,type=float,help='clip grads')
parser.add_argument("-link_model",default='link', type=str)
parser.add_argument("-loss",default="cross_entropy",type=str)
parser.add_argument("-lr",default=0.1,type=float,help='learning rate')
parser.add_argument("-lrhigh",default=0.5,type=float,help="high learning rate for cycling")
parser.add_argument("-lrstep",default=4, type=int,help='steps in cycle')
parser.add_argument("-lrwarm",action="store_true",help='use cycling learning rate')
parser.add_argument("-lrdecay",default=0.1,type=float,help="use learning rate decay")
parser.add_argument("-alpha", default=1.0,type=float,help="weight of forward heuristic")
#data
parser.add_argument("-nosave",action='store_false',help='dont save')
parser.add_argument("-save",required=True,help="where to save model")
parser.add_argument("-datadir",default="./data/")
parser.add_argument("-data",default="preprocessed.train.tsv",help="preprocessed data")
parser.add_argument("-traindata",default="preprocessed.train.tsv",help="preprocessed train data")
parser.add_argument("-savevocab",default=None,type=str)
parser.add_argument("-loadvocab",default=None,type=str)
parser.add_argument("-n_classes", default=2, type=int)
#eval
parser.add_argument("-eval",action='store_true')
#inference
parser.add_argument("-test",action='store_true')
parser.add_argument("-gpu",default=0,type=int)
args = parser.parse_args()
if args.gpu == -1:
args.gpu = 'cpu'
args.device = torch.device(args.gpu)
return args