Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[pandas](http://pandas.pydata.org) provides high-level data structures and functions designed to make working with structured or tabular data fast, easy and expressive. The primary objects in pandas that we will be using are the `DataFrame`, a tabular, column-oriented data structure with both row and column labels, and the `Series`, a one-dimensional labeled array object.\n",
"\n",
"pandas blends the high-performance, array-computing ideas of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases. It provides sophisticated indexing functionality to make it easy to reshape, slice and perform aggregations.\n",
"While pandas adopts many coding idioms from NumPy, the most significant difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n",
"- [Data Structures](#structures)\n",
" - [Series](#series)\n",
" - [DataFrame](#dataframe)\n",
"- [Essential Functionality](#ess_func)\n",
" - [Reindexing](#reindexing)\n",
" - [Dropping Entries](#removing)\n",
" - [Indexing, Slicing and Filtering](#indexing)\n",
" - [Arithmetic Operations](#arithmetic)\n",
"- [Summarizing and Computing Descriptive Statistics](#sums)\n",
"- [Loading and storing data](#loading)\n",
" - [Text Format](#text) \n",
" - [Web Scraping](#web)\n",
"- [Data Cleaning and preperation](#cleaning)\n",
" - [Handling missing data](#missing)\n",
" - [Data transformation](#transformation)\n",
"- [String manipulation](#strings)\n",
"\n",
"The common pandas import statment is shown below:"
"metadata": {},
"outputs": [],
"source": [
"# Common pandas import statement\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Structures <a name=\"structures\"></a>\n",
"## Series <a name=\"series\"></a>\n",
"A Series is a one-dimensional array-like object containing a sequence of values and an associated array of data labels called its index.\n",
"\n",
"The easiest way to make a Series is from an array of data:"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data = pd.Series([4, 7, -5, 3])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now try printing out data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 4\n",
"1 7\n",
"2 -5\n",
"3 3\n",
"dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The string representation of a Series displayed interactively shows the index on the left and the values on the right. Because we didn't specify an index, the default on is simply integers 0 through N-1.\n",
"\n",
"You can output only the values of a Series using \n",
"```python\n",
"data.values\n",
"```\n",
"```python\n",
"data.index\n",
"```\n",
"Try it out below!"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"array([ 4, 7, -5, 3])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can specify custom indeces when intialising the Series"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data2 = pd.Series([4, 7, -5, 3], index=[\"a\", \"b\", \"c\", \"d\"])"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"a 4\n",
"b 7\n",
"c -5\n",
"d 3\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now you can use these labels to access the data similar to a normal array"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2[\"a\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another way to think about Series is as a fixed-length ordered dictionary. Furthermore, you can actually define a Series in a similar manner to a dictionary"
"metadata": {},
"outputs": [],
"source": [
"cities = {\"Glasgow\" : 599650, \"Edinburgh\" : 464990, \"Abardeen\" : 196670, \"Dundee\" : 147710}\n",
"data3 = pd.Series(cities)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Glasgow 599650\n",
"Edinburgh 464990\n",
"Abardeen 196670\n",
"Dundee 147710\n",
"dtype: int64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can do arithmetic operations between Series similar to NumPy arrays. Even if you have 2 datasets with different data, arithmetic operations will be aligned according to their indices.\n",
"\n",
"Let's look at an example"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"cities_uk = {\"Birmingham\" : 1092330, \"Leeds\": 751485, \"Glasgow\" : 599650,\n",
" \"Manchester\" : 503127, \"Edinburgh\" : 464990}\n",
"data4 = pd.Series(cities_uk)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Abardeen NaN\n",
"Birmingham NaN\n",
"Dundee NaN\n",
"Edinburgh 929980.0\n",
"Glasgow 1199300.0\n",
"Leeds NaN\n",
"Manchester NaN\n",
"dtype: float64"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3 + data4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice how some of the results are NaN? Well, that is because there were no instances of those cities within both of the datasets. You can usually extract NaNs from a Series with\n",
"```python\n",
"data4.isnull()\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type. The DataFrame has both row and column index and can be thought of as a dict of Series all sharing the same index.\n",
"\n",
"The most common way to create a DataFrame is with dicts"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"data = {\"cities\" : [\"Glasgow\", \"Edinburgh\", \"Abardeen\", \"Dundee\"],\n",
" \"population\" : [599650, 464990, 196670, 147710],\n",
" \"year\" : [2011, 2013, 2013, 2013]}\n",
"frame = pd.DataFrame(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Try printing it out"
]
},
{
"cell_type": "code",
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cities population year\n",
"0 Glasgow 599650 2011\n",
"1 Edinburgh 464990 2013\n",
"2 Abardeen 196670 2013\n",
"3 Dundee 147710 2013"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jupyter Notebooks prints it out in a nice table but the basic version of this is also just as readable!\n",
"\n",
"Additionally you can also specify the order of columns during initialisation"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2 = pd.DataFrame(data, columns=[\"year\", \"cities\", \"population\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can retrieve a particular column from a DataFrame with\n",
"```python\n",
"frame[\"cities\"]\n",
"```\n",
"The result is going to be a Series\n",
"\n",
"Additionally, you can retrieve a row from the dataset using\n",
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-30-dd699a264eca>, line 1)",
"output_type": "error",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-30-dd699a264eca>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m frame[index=1]\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"frame[1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is also possible to add and modify the columns of a DataFrame"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = 100"
]
},
{
"cell_type": "code",
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>size</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2011</td>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2013</td>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013</td>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2013</td>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>100</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year cities population size\n",
"0 2011 Glasgow 599650 100\n",
"1 2013 Edinburgh 464990 100\n",
"2 2013 Abardeen 196670 100\n",
"3 2013 Dundee 147710 100"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"frame2"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"frame2[\"size\"] = [175, 264, 65.1, 60] # in km^2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similar to dicts, columns can be deleted using\n",
"```python\n",
"del frame2[\"size\"]\n",
"```"
]
},
{
"cell_type": "code",
"source": [
"del frame2[\"size\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Another common way of creating DataFrames is from a nested dict of dicts:"
]
},
{
"cell_type": "code",
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cities</th>\n",
" <th>population</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Glasgow</td>\n",
" <td>599650</td>\n",
" <td>2011</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edinburgh</td>\n",
" <td>464990</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Abardeen</td>\n",
" <td>196670</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Dundee</td>\n",
" <td>147710</td>\n",
" <td>2013</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cities population year\n",
"0 Glasgow 599650 2011\n",
"1 Edinburgh 464990 2013\n",
"2 Abardeen 196670 2013\n",
"3 Dundee 147710 2013"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data2 = {\"Glasgow\": {2011: 599650},\n",
" \"Edinburgh\": {2013:464990},\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a table of different ways of initialising a DataFrame for your reference\n",
"\n",
"| Type | Notes |\n",
"| --- | --- |\n",
"| 2D ndarray | A matrix of data; passing optional row and column labels |\n",
"| dict of arrays, lists, or tuples | Each sequence becomes a column in the DataFrame; all sequences must be the same length |\n",
"| NumPy structured/recorded array | Treated as with the \"dict of arrays, lists or tuples\" case |\n",
"| dict of Series | Each value becomes a column; indexes from each Series are unioned together to<br>form the result's row index if not explicit index is passed |\n",
"| dict of dicts | Each inner dict becomes a column; keys are unioned to form the row<br>index as in the \"dict of Series\" case |\n",
"| List of dicts or Series | Each item becomes a row in the DataFrame; union of dict keys or<br>Series indices becomes the DataFrame's column labels |\n",
"| List of lists or tuples | Treated as the \"2D ndarray\" case |\n",
"| Another DataFrame | The DataFrame's indexes are used unless different ones are passed |\n",
"| NumPy MaskedArray | Like the \"2D ndarray\" case except masked values become NA/missing in the DataFrame |"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Essential Functionality <a name=\"ess_func\"></a>\n",
"In this section, we will go through the fundamental mechanics of interacting with the data contained in a Series or DaraFrame."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With pandas it is easy to restructure the order of your columns and rows using the `reindex` function. Let's have a look at an example:"
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"a 1\n",
"b 2\n",
"c 3\n",
"d 4\n",
"e 5\n",
"dtype: int64"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# first define a new Series\n",
"s = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"d 4\n",
"b 2\n",
"a 1\n",
"c 3\n",
"e 5\n",
"dtype: int64"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now you can reshuffle the indices\n",
"s = s.reindex(['d', 'b', 'a', 'c', 'e'])\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Easy as that! This can also be extended for DataFrames, where you can reorder both the columns and indices at the same time!"
]
},
{
"cell_type": "code",
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>3</td>\n",
" <td>4</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"b 3 4 5\n",
"c 6 7 8"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# first define a new Dataframe\n",
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"df"
]
},
{
"cell_type": "code",
"source": [
"# Now we can restructure it with reindex\n",
"df = df.reindex(index=[\"a\", \"d\", \"c\", \"b\"],\n",
" columns=[\"Aberdeen\", \"Glasgow\", \"Edinburgh\", \"Dundee\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Notice something interesting? We can actually add new indices and columns using the `reindex` method. This results in the new slots in our table to be filled in with `NaN` values."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Removing columns/indices <a name=\"removing\"></a>\n",
"Similarl to above, it is easy to remove entries. This is done with the `drop` method and can be applied to both columns and indices:"
]
},
{
"cell_type": "code",
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edinburgh</th>\n",
" <th>Glasgow</th>\n",
" <th>Aberdeen</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>6</td>\n",
" <td>7</td>\n",
" <td>8</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Edinburgh Glasgow Aberdeen\n",
"a 0 1 2\n",
"c 6 7 8"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# define new DataFrame\n",
"data = np.reshape(np.arange(9), (3,3))\n",
"df = pd.DataFrame(data, index=[\"a\", \"b\", \"c\"],\n",
" columns=[\"Edinburgh\", \"Glasgow\", \"Aberdeen\"])\n",
"\n",
"df.drop(\"b\")"
]
},
{
"cell_type": "code",
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Glasgow</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>a</th>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>b</th>\n",
" <td>4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>c</th>\n",
" <td>7</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Glasgow\n",
"a 1\n",
"b 4\n",
"c 7"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],