Newer
Older
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amsmath}
\title{Bridgeland Stabilities and Finding Walls}
\subtitle{}
\author{Luke Naylor}
\date{March 2023}
\newcommand\RR{\mathbb{R}}
\newcommand\centralcharge{\mathcal{Z}}
\newcommand\coh{\operatorname{Coh}}
\newcommand\rank{\operatorname{rk}}
\newcommand\degree{\operatorname{deg}}
\newcommand\realpart{\mathfrak{Re}}
\newcommand\imagpart{\mathfrak{Im}}
\newcommand\Torsion{\mathcal{T}}
\newcommand\Free{\mathcal{F}}
\newcommand\firsttilt[1]{\mathcal{B}^{#1}}
\newcommand\derived{\mathcal{D}}
from sagetexscripts import *
\end{sagesilent}
\section{Transitioning to Stab on Triangulated Categories}
\begin{frame}{Central Charge for Mumford Stability}
\begin{align*}
&\centralcharge \colon \coh(X) \to \CC \\
&\centralcharge (E) = - \degree(E) + i \rank(E)
\begin{columns}[T] % align columns
\begin{column}{.48\linewidth}
\[
\centralcharge (E) = r(E) e^{i\pi \varphi(E)}
\]
\begin{center}
\begin{large}
$\varphi$ called "phase"
\end{large}
\end{center}
\end{column}%
%\hfill%
\begin{column}{.48\linewidth}
\[
\mu(E) =
\frac{
- \realpart(\centralcharge(E))
}{
\imagpart(\centralcharge(E))
}
\quad
\]
\begin{center}
\begin{large}
(allow for $+\infty$)
\end{large}
\end{center}
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
\begin{frame}{Extending Central Charge to $D^b(X)$}
\[
E^\bullet = [\cdots \to * \to * \to * \to \cdots] \in D^b(X)
\]
\begin{align*}
\rank(E^\bullet) &= \sum (-1)^i \rank(\cohom^i(E)) \\
\degree(E^\bullet) &= \sum (-1)^i \degree(\cohom^i(E))
\end{align*}
\vfill
\begin{columns}[t,onlytextwidth]
\begin{column}{.5\linewidth}
In particular, for shifts:
\begin{itemize}
\item $\rank(E[1]) = - \rank(E)$
\item $\degree(E[1]) = - \degree(E)$
\end{itemize}
\end{column}
\begin{column}{.49\linewidth}
For $\centralcharge$:
\begin{itemize}
\item $\centralcharge(E[1]) = - \centralcharge(E)$
\item $\centralcharge(E[2]) = \centralcharge(E)$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig2.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig3.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig4.plot()}
}
\end{column}%
\end{columns}
\vfill
\begin{itemize}
\item $\centralcharge(E[2]) = \centralcharge(E)$
\item But $\phi(E[n]) = \phi(E) + n$
\item Stability decided among $E \in D^b(X) \colon \phi(E) \in (0, \pi] =
\coh(X)$ \\
\begin{frame}{Benefits of this Generalization}
\begin{itemize}
\item Can take different slicings (and heart)
\item Tweak $\centralcharge$ \quad $\to$ \quad m.b. tweak slicing
\item No ``strong'' Bridgeland stabilities with $\coh(X)$ as heart for dim>1
\item Gieseker stability (a polynomial stability) can be constructed as a
limit of Bridgeland stabilities
\section{Moving to Picard Rank 1 Surfaces}
\begin{frame}{Moving to Surfaces}
\begin{itemize}
\item $\centralcharge(\bigO_x) = 0$ for Mumford stability
\\ ignores extra term in Chern character:
$(r, d \ell, \chi)$
\item Classically, Gieseker stability used
\\ \qquad slope comparison $\to$ lexicographic comparison
\end{itemize}
\end{frame}
\begin{frame}{New Central Charges for Surfaces}
Explicitly constructed for K3 - Bridgeland (2003)
\vfill
\begin{tcolorbox}[title=Picard Rank 1 with polarization $L$]
\begin{align*}
\centralcharge_{\alpha, \beta}(E) &:=
- \left<
&\text{where}\:\:\ell := c_1(L),\:
\alpha\in\RR^{>0},\beta\in\RR
\\ &= - \chern_{\mathrm{top}}(\exp( \alpha \ell + \beta \ell i)^{-1} \otimes E)
&\text{($\leftarrow$ abuse)}
\end{align*}
\end{tcolorbox}
\vfill
$\exp(a) = \left(1, a, \frac12 a^2\right)$ defined formally,
in particular: $\exp(n \ell) = L^{\otimes n}$
\vfill
{
\color{gray}
For Mumford stability on Curves:
\begin{align*}
\centralcharge(E) &= -\chern_1(E) + \chern_0(E) i
\\ &= - \left<\exp(-i), E\right>
\end{align*}
}
\end{frame}
\begin{sagesilent}
v = generic_chern_char(2, "v")
Z = stability.Tilt().central_charge(v).expand()
nu = stability.Tilt().slope(v)
\end{sagesilent}
\begin{frame}{Explicit Formulae for New Central Charge}
\begin{align*}
\centralcharge_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{Z} \\
\nu_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{nu} \\
\end{align*}
\vfill
\begin{center}
Denominator /
$\imagpart(\centralcharge_{\alpha, \beta}) > 0 \iff \beta < \frac{v_1}{v_0} = \mu$
\\ $\to$ other $E\in\coh(X)$ cannot be in heart
\end{center}
\end{frame}
\begin{frame}{New Heart - Tilting}
Role of $\coh(X)$ as heart of $\derived^b(X)$ replaced:
\vfill
\begin{tcolorbox}[title=First Tilt of $\coh(X)$]
\begin{align*}
\firsttilt\beta :=
\left\{
E \in \derived^b(X) \colon \quad
\cohom^{0}(E) \in \Torsion_\beta, \quad
\cohom^{-1}(E) \in \Free_\beta, \quad
\cohom^i(E) = 0 \:\: \text{o.w.}
\right\}
\end{align*}
where $\beta \in \RR$ and:
\begin{align*}
\Torsion_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) > \beta \quad \text{whenever} \: E \twoheadrightarrow G \not=0,E
\:\right\}&&
{\color{gray}
\: \ni \cohom^0
}
\\
\Free_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) \leq \beta \quad \text{whenever} \: 0 \not= G \hookrightarrow E
\:\right\}&&
{\color{gray}
\: \ni \cohom^{-1}
}
\end{align*}
\end{tcolorbox}
\vfill
\begin{itemize}
\item $\Torsion_\beta \subset \firsttilt\beta$ includes Mumford semistable
$E \in Coh(X)$ s.t. $\mu(E) \geq \beta$
\item As $\beta \to - \infty$, \: $\firsttilt\beta \rightsquigarrow \coh(X)$
\begin{itemize}
\item $\Torsion_\beta \rightsquigarrow \coh(X)$
\item $\Free_\beta \rightsquigarrow 0$
\end{itemize}
{\color{gray}
\item $\hom(T, F) = 0$ for $T \in \Torsion_\beta, F \in \Free_\beta$
makes this a torsion theory
\item As $\beta \to +\infty$, \:
$\Torsion_\beta \rightsquigarrow$ torsion sheaves (includes skyscrapers)
\begin{frame}{Tilts $\firsttilt\beta$ on $\alpha,\beta$-Plane}
When $E \in \coh(X)$ is Gieseker semistable (hence Mumford semistable):
\resizebox{1\hsize}{!}{
\sageplot{fig5.plot()}
}
\end{frame}
\begin{frame}{Notable Stability Conditions on Plane}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.49\linewidth}
$\beta \to -\infty$, Fixed $\alpha$
\hline \vspace{1em}
$n \in \ZZ$
\begin{equation*}
\nu_{\alpha, -n}(E) =
\frac{
\chern_2(E\otimes L^n)
{\color{gray}
- \frac{\alpha^2}{2} \rank(E)
}
}{
{\color{gray}
(\chern_1(E) +
}
n \rank(E)
{\color{gray}
)
}
}
%n \in \ZZ
\end{equation*}
$\rightsquigarrow$ Tends to Gieseker Stability
\vfill
\begin{tcolorbox}[title=Gieseker Stability]
E stable when red. Hilb. poly.
\[
p_E(n) = \frac{\chern_2(E\otimes L^n)}{\rank(E)}
\]
$0 \not= F \hookrightarrow E$, for large $n$. \\
{\color{gray}
(equiv. to lexic. comparison between poly. coeffs)
}
\end{tcolorbox}
\end{column}%
\hfill%
\begin{column}{.49\linewidth}
$\beta = \mu(E)$
\hline \vspace{1em}
$\nu_{\alpha, \beta}(E) = + \infty$ \\
so can only be destabilized by
$F \hookrightarrow E$ with $\nu_{\alpha, \beta}(F) = + \infty$ too
($\beta = \mu(F)$) \\
$\rightsquigarrow$ destabilized w.r.t. Mumford slope
\end{column}%
\end{frame}
\section{Walls}
% walls, make the explanation about fixing a Chern character