Newer
Older
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage{amsmath}
\usepackage{tabularx}
\usepackage{array}
\title{Bridgeland Stabilities and Finding Walls}
\subtitle{}
\author{Luke Naylor}
\date{March 2023}
\newcommand\RR{\mathbb{R}}
\newcommand\centralcharge{\mathcal{Z}}
\newcommand\coh{\operatorname{Coh}}
\newcommand\rank{\operatorname{rk}}
\newcommand\degree{\operatorname{deg}}
\newcommand\realpart{\mathfrak{Re}}
\newcommand\imagpart{\mathfrak{Im}}
\newcommand\Torsion{\mathcal{T}}
\newcommand\Free{\mathcal{F}}
\newcommand\firsttilt[1]{\mathcal{B}^{#1}}
\newcommand\derived{\mathcal{D}}
from sagetexscripts import *
\end{sagesilent}
\section{Transitioning to Stab on Triangulated Categories}
\begin{frame}{Central Charge for Mumford Stability}
\begin{align*}
&\centralcharge \colon \coh(X) \to \CC \\
&\centralcharge (E) = - \degree(E) + i \rank(E)
\begin{columns}[T] % align columns
\begin{column}{.48\linewidth}
\[
\centralcharge (E) = r(E) e^{i\pi \varphi(E)}
\]
\begin{center}
\begin{large}
$\varphi$ called "phase"
\end{large}
\end{center}
\end{column}%
%\hfill%
\begin{column}{.48\linewidth}
\[
\mu(E) =
\frac{
- \realpart(\centralcharge(E))
}{
\imagpart(\centralcharge(E))
}
\quad
\]
\begin{center}
\begin{large}
(allow for $+\infty$)
\end{large}
\end{center}
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\begin{frame}{Extending Central Charge to $D^b(X)$}
\[
E^\bullet = [\cdots \to * \to * \to * \to \cdots] \in D^b(X)
\]
\begin{align*}
\rank(E^\bullet) &= \sum (-1)^i \rank(\cohom^i(E)) \\
\degree(E^\bullet) &= \sum (-1)^i \degree(\cohom^i(E))
\end{align*}
\vfill
\begin{columns}[t,onlytextwidth]
\begin{column}{.5\linewidth}
In particular, for shifts:
\begin{itemize}
\item $\rank(E[1]) = - \rank(E)$
\item $\degree(E[1]) = - \degree(E)$
\end{itemize}
\end{column}
\begin{column}{.49\linewidth}
For $\centralcharge$:
\begin{itemize}
\item $\centralcharge(E[1]) = - \centralcharge(E)$
\item $\centralcharge(E[2]) = \centralcharge(E)$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{columns}[t,onlytextwidth] % align columns
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig2.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig3.plot()}
}
\end{column}%
%\hfill%
\begin{column}{.33\linewidth}%
\resizebox{1.1\hsize}{!}{
\sageplot{fig4.plot()}
}
\end{column}%
\end{columns}
\vfill
\begin{itemize}
\item $\centralcharge(E[2]) = \centralcharge(E)$
\item But $\phi(E[n]) = \phi(E) + n$
\item Stability decided among $E \in D^b(X) \colon \phi(E) \in (0, \pi] =
\coh(X)$ \\
\begin{frame}{Benefits of this Generalization}
\begin{itemize}
\item Can take different slicings (and heart)
\item Tweak $\centralcharge$ \quad $\to$ \quad m.b. tweak slicing
\item No ``strong'' Bridgeland stabilities with $\coh(X)$ as heart for dim>1
\item Gieseker stability (a polynomial stability) can be constructed as a
limit of Bridgeland stabilities
\section{Moving to Picard Rank 1 Surfaces}
\begin{frame}{Moving to Surfaces}
\begin{itemize}
\item $\centralcharge(\bigO_x) = 0$ for Mumford stability
\\ ignores extra term in Chern character:
$(r, d \ell, \chi)$
\item Classically, Gieseker stability used
\\ \qquad slope comparison $\to$ lexicographic comparison
\end{itemize}
\end{frame}
\begin{frame}{New Central Charges for Surfaces}
Explicitly constructed for K3 - Bridgeland (2003)
\vfill
\begin{tcolorbox}[title=Picard Rank 1 with polarization $L$]
\begin{align*}
\centralcharge_{\alpha, \beta}(E) &:=
- \left<
&\text{where}\:\:\ell := c_1(L),\:
\alpha\in\RR^{>0},\beta\in\RR
\\ &= - \chern_{\mathrm{top}}(\exp( \alpha \ell + \beta \ell i)^{-1} \otimes E)
&\text{($\leftarrow$ abuse)}
\end{align*}
\end{tcolorbox}
\vfill
$\exp(a) = \left(1, a, \frac12 a^2\right)$ defined formally,
in particular: $\exp(n \ell) = L^{\otimes n}$
\vfill
{
\color{gray}
For Mumford stability on Curves:
\begin{align*}
\centralcharge(E) &= -\chern_1(E) + \chern_0(E) i
\\ &= - \left<\exp(-i), E\right>
\end{align*}
}
\end{frame}
\begin{sagesilent}
v = generic_chern_char(2, "v")
Z = stability.Tilt().central_charge(v).expand()
nu = stability.Tilt().slope(v)
\end{sagesilent}
\begin{frame}{Explicit Formulae for New Central Charge}
\begin{align*}
\centralcharge_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{Z} \\
\nu_{\alpha, \beta}\left(v_0, v_1 \ell, v_2 \ell^2\right)
&= \sage{nu} \\
\end{align*}
\vfill
\begin{center}
Denominator /
$\imagpart(\centralcharge_{\alpha, \beta}) > 0 \iff \beta < \frac{v_1}{v_0} = \mu$
\\ $\to$ other $E\in\coh(X)$ cannot be in heart
\end{center}
\end{frame}
\begin{frame}{New Heart - Tilting}
Role of $\coh(X)$ as heart of $\derived^b(X)$ replaced:
\vfill
\begin{tcolorbox}[title=First Tilt of $\coh(X)$]
\begin{align*}
\firsttilt\beta :=
\left\{
E \in \derived^b(X) \colon \quad
\cohom^{0}(E) \in \Torsion_\beta, \quad
\cohom^{-1}(E) \in \Free_\beta, \quad
\cohom^i(E) = 0 \:\: \text{o.w.}
\right\}
\end{align*}
where $\beta \in \RR$ and:
\begin{align*}
\Torsion_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) > \beta \quad \text{whenever} \: E \twoheadrightarrow G \not=0,E
\:\right\}&&
{\color{gray}
\: \ni \cohom^0
}
\\
\Free_\beta &:=
\left\{\:
E \in \coh(X) \colon \qquad
\mu(G) \leq \beta \quad \text{whenever} \: 0 \not= G \hookrightarrow E
\:\right\}&&
{\color{gray}
\: \ni \cohom^{-1}
}
\end{align*}
\end{tcolorbox}
\vfill
\begin{itemize}
\item $\Torsion_\beta \subset \firsttilt\beta$ includes Mumford semistable
$E \in Coh(X)$ s.t. $\mu(E) \geq \beta$
\item As $\beta \to - \infty$, \: $\firsttilt\beta \rightsquigarrow \coh(X)$
\begin{itemize}
\item $\Torsion_\beta \rightsquigarrow \coh(X)$
\item $\Free_\beta \rightsquigarrow 0$
\end{itemize}
{\color{gray}
\item $\hom(T, F) = 0$ for $T \in \Torsion_\beta, F \in \Free_\beta$
makes this a torsion theory
\item As $\beta \to +\infty$, \:
$\Torsion_\beta \rightsquigarrow$ torsion sheaves (includes skyscrapers)
\begin{frame}{Tilts $\firsttilt\beta$ on $\alpha,\beta$-Plane}
When $E \in \coh(X)$ is Gieseker semistable (hence Mumford semistable):
\resizebox{1\hsize}{!}{
\sageplot{fig5.plot()}
}
\end{frame}
\begin{frame}{Notable Stability Conditions on Plane}
\begin{tabular}{ m{10cm}|m{10cm} }
$\beta = \mu(E)$
&
$\alpha$ fixed, $\beta \to - \infty$
\\ \hline
{
$\nu_{\alpha, \beta}(E) = + \infty$ so can only be destabilized by
$F \hookrightarrow E$ with $\nu_{\alpha, \beta}(F) = + \infty$ too
($\beta = \mu(F)$)
\begin{align*}
\nu_{\alpha, -n}(E) &=
\frac{
\chern_2(E\otimes L^n)
{\color{gray}
- \frac{\alpha^2}{2} \rank(E)
}
}{
{\color{gray}
(\chern_1(E) +
}
n \rank(E)
{\color{gray}
)
}
}
\end{align*}
$\rightarrow$ Tends to Gieseker Stability
\vfill
\begin{tcolorbox}[title=Gieseker Stability]
E stable when red. Hilb. poly.
\[
p_E(n) = \frac{\chern_2(E\otimes L^n)}{\rank(E)}
\]
not overtaken by that of any \\
$0 \not= F \hookrightarrow E$, for large $n$. \\
{\color{gray}
(equiv. to lexic. comparison between poly. coeffs)
}
\end{tcolorbox}
\end{frame}
\section{Walls}
% walls, make the explanation about fixing a Chern character