Skip to content
Snippets Groups Projects
Commit e4cf3a42 authored by Luke Naylor's avatar Luke Naylor
Browse files

Correct bgmlv2 'lowerbounds' to 'upperbounds'

parent 04e73735
No related branches found
No related tags found
No related merge requests found
...@@ -360,45 +360,45 @@ bgmlv2_d_ineq = ( ...@@ -360,45 +360,45 @@ bgmlv2_d_ineq = (
).expand() ).expand()
# Keep hold of lower bound for d # Keep hold of lower bound for d
bgmlv2_d_lowerbound = bgmlv2_d_ineq.rhs() bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs()
\end{sagesilent} \end{sagesilent}
\begin{equation} \begin{equation}
\label{eqn-bgmlv2_d_lowerbound} \label{eqn-bgmlv2_d_upperbound}
\sage{bgmlv2_d_ineq} \sage{bgmlv2_d_ineq}
\end{equation} \end{equation}
\begin{sagesilent} \begin{sagesilent}
# Seperate out the terms of the lower bound for d # Seperate out the terms of the lower bound for d
bgmlv2_d_lowerbound_without_hyp = ( bgmlv2_d_upperbound_without_hyp = (
bgmlv2_d_lowerbound bgmlv2_d_upperbound
.subs(1/r == 0) .subs(1/r == 0)
) )
bgmlv2_d_lowerbound_const_term = ( bgmlv2_d_upperbound_const_term = (
bgmlv2_d_lowerbound_without_hyp bgmlv2_d_upperbound_without_hyp
.subs(r==0) .subs(r==0)
) )
bgmlv2_d_lowerbound_linear_term = ( bgmlv2_d_upperbound_linear_term = (
bgmlv2_d_lowerbound_without_hyp bgmlv2_d_upperbound_without_hyp
- bgmlv2_d_lowerbound_const_term - bgmlv2_d_upperbound_const_term
).expand() ).expand()
bgmlv2_d_lowerbound_exp_term = ( bgmlv2_d_upperbound_exp_term = (
bgmlv2_d_lowerbound bgmlv2_d_upperbound
- bgmlv2_d_lowerbound_without_hyp - bgmlv2_d_upperbound_without_hyp
).expand() ).expand()
\end{sagesilent} \end{sagesilent}
Viewing equation \ref{eqn-bgmlv2_d_lowerbound} as a lower bound for $d$ in term Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term
of $r$ again, there's a constant term of $r$ again, there's a constant term
$\sage{bgmlv2_d_lowerbound_const_term}$, $\sage{bgmlv2_d_upperbound_const_term}$,
a linear term a linear term
$\sage{bgmlv2_d_lowerbound_linear_term}$, $\sage{bgmlv2_d_upperbound_linear_term}$,
and a hyperbolic term and a hyperbolic term
$\sage{bgmlv2_d_lowerbound_exp_term}$. $\sage{bgmlv2_d_upperbound_exp_term}$.
Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when
$\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones $\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones
for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}. for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}.
...@@ -554,10 +554,22 @@ Suppose we take $\beta = \beta_{-}$ in the previous subsections, to find all ...@@ -554,10 +554,22 @@ Suppose we take $\beta = \beta_{-}$ in the previous subsections, to find all
circular walls to the left of the vertical wall (TODO as discussed in ref). circular walls to the left of the vertical wall (TODO as discussed in ref).
\begin{equation*} \begin{equation*}
\sage{ bgmlv3_d_upperbound_const_term } d \geq
\sage{bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)}
+ \sage{bgmlv1_d_lowerbound_linear_term}
+ \sage{bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)}
\end{equation*} \end{equation*}
\begin{equation*} \begin{equation*}
\sage{bgmlv3_d_upperbound_const_term_alt1.subs(chbv == 0)} d \geq
\sage{bgmlv2_d_lowerbound_const_term}
+ \sage{bgmlv2_d_lowerbound_linear_term}
+ \sage{bgmlv2_d_lowerbound_exp_term}
\end{equation*}
\begin{equation*}
d \leq
\sage{bgmlv3_d_upperbound_const_term_alt.subs(chbv == 0)}
+ \sage{bgmlv3_d_upperbound_linear_term}
+ \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv == 0)}
\end{equation*} \end{equation*}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment