Skip to content
Snippets Groups Projects
main.tex 38 KiB
Newer Older
%% Write  basic article template
Luke Naylor's avatar
Luke Naylor committed

\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{color}
\usepackage{sagetex}
\usepackage{minted}
\usepackage[]{breqn}
Luke Naylor's avatar
Luke Naylor committed

Luke Naylor's avatar
Luke Naylor committed
\newcommand{\QQ}{\mathbb{Q}}
Luke Naylor's avatar
Luke Naylor committed
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\RR}{\mathbb{R}}
Luke Naylor's avatar
Luke Naylor committed
\newcommand{\chern}{\operatorname{ch}}
Luke Naylor's avatar
Luke Naylor committed
\newcommand{\lcm}{\operatorname{lcm}}
Luke Naylor's avatar
Luke Naylor committed
\newcommand{\firsttilt}[1]{\mathcal{B}^{#1}}
\newcommand{\bddderived}{\mathcal{D}^{b}}
\newcommand{\centralcharge}{\mathcal{Z}}
\newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}}
Luke Naylor's avatar
Luke Naylor committed

\newtheorem{theorem}{Theorem}[section]
\newtheorem{corrolary}{Corrolary}[section]
\newtheorem{lemmadfn}{Lemma/Definition}[section]
\newtheorem{dfn}{Definition}[section]
Luke Naylor's avatar
Luke Naylor committed
\begin{document}

\begin{sagesilent}
# Requires extra package:
#! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple

from pseudowalls import *

Δ = lambda v: v.Q_tilt()
mu = stability.Mumford().slope
\end{sagesilent}

Luke Naylor's avatar
Luke Naylor committed
\title{Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and
Practical Methods for Finding Pseudowalls}
Luke Naylor's avatar
Luke Naylor committed

\author{Luke Naylor}

\maketitle

Luke Naylor's avatar
Luke Naylor committed
\tableofcontents

Luke Naylor's avatar
Luke Naylor committed
\section{Introduction}
\label{sec:intro}
Luke Naylor's avatar
Luke Naylor committed

[ref] shows that for any rational $\beta_0$,
the vertical line $\{\sigma_{\alpha,\beta_0} \colon \alpha \in \RR_{>0}\}$ only
Luke Naylor's avatar
Luke Naylor committed
intersects finitely many walls. A consequence of this is that if
$\beta_{-}$ is rational, then there can only be finitely many circular walls to the
Luke Naylor's avatar
Luke Naylor committed
left of the vertical wall $\beta = \mu$.
On the other hand, when $\beta_{-}$ is not rational, [ref] showed that there are
Luke Naylor's avatar
Luke Naylor committed
infinitely many walls.

This dichotomy does not only hold for real walls, realised by actual objects in
$\bddderived(X)$, but also for pseudowalls. Here pseudowalls are defined as
`potential' walls, induced by hypothetical Chern characters of destabilizers
which satisfy certain numerical conditions which would be satisfied by any real
destabilizer, regardless of whether they are realised by actual semistabilizers
in $\bddderived(X)$.
Luke Naylor's avatar
Luke Naylor committed

Since real walls are a subset of pseudowalls, the irrational $\beta_{-}$ case
Luke Naylor's avatar
Luke Naylor committed
follows immediately from the corresponding case for real walls.
However, the rational $\beta_{-}$ case involves showing that the following
Luke Naylor's avatar
Luke Naylor committed
conditions only admit finitely many solutions (despite the fact that the same
conditions admit infinitely many solutions when $\beta_{-}$ is irrational).
Luke Naylor's avatar
Luke Naylor committed


For a destabilizing sequence
$E \hookrightarrow F \twoheadrightarrow G$ in $\mathcal{B}^\beta$
we have the following conditions.
There are some Bogomolov-Gieseker type inequalities:
$0 \leq \Delta(E), \Delta(G)$ and $\Delta(E) + \Delta(G) \leq \Delta(F)$.
We also have a condition relating to the tilt category $\firsttilt\beta$:
$0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F)$.
Luke Naylor's avatar
Luke Naylor committed
Finally, there is a condition ensuring that the radius of the circular wall is
strictly positive: $\chern^{\beta_{-}}_2(E) > 0$.
Luke Naylor's avatar
Luke Naylor committed

For any fixed $\chern_0(E)$, the inequality
$0 \leq \chern^{\beta}_1(E) \leq \chern^{\beta}_1(F)$,
allows us to bound $\chern_1(E)$. Then, the other inequalities allow us to
bound $\chern_2(E)$. The final part to showing the finiteness of pseudowalls
would be bounding $\chern_0(E)$. This has been hinted at in [ref] and done
explicitly by Benjamin Schmidt within a computer program which computes
pseudowalls. Here we discuss these bounds in more detail, along with the methods
used, followed by refinements on them which give explicit formulae for tighter
bounds on $\chern_0(E)$ of potential destabilizers $E$ of $F$.

Luke Naylor's avatar
Luke Naylor committed

\section{Characteristic Curves of Stability Conditions Associated to Chern
Characters}
Luke Naylor's avatar
Luke Naylor committed

\begin{dfn}[Pseudo-semistabilizers]
	Given a Chern Character $v$, and a given stability condition $\sigma$, 
	a pseudo-semistabilizing $u$ is a `potential' Chern character:
	\[
		u = \left(r, c\ell, d \frac{1}{2} \ell^2\right)
	\]
	which has the same slope as $v$: $\mu_{\sigma}(u) = \mu_{\sigma}(v)$.

	Note $u$ does not need to be a Chern character of an actual sub-object of some
	object in the stability condition's heart with Chern character $v$.
\end{dfn}

At this point, and in this document, we do not care about whether
pseudo-semistabilizers are even Chern characters of actual elements of
$\bddderived(X)$, some other sources may have this extra restriction too.

Considering the stability conditions with two parameters $\alpha, \beta$ on
Picard rank 1 surfaces.
We can draw 2 characteristic curves for any given Chern character $v$ with
$\Delta(v) \geq 0$ and positive rank.

\begin{sagesilent}
def charact_curves(v):
    alpha = stability.Tilt().alpha
    beta = stability.Tilt().beta
    coords_range = (beta, -4, 5), (alpha, 0, 4)
    p = (
      implicit_plot(stability.Tilt().degree(v), *coords_range )
      + line([(mu(v),0),(mu(v),5)], linestyle = "dashed")
      + text(r"$ch_2^{\alpha, \beta}(v)=0$",[3.5, 2], rotation=45, fontsize="x-large", clip=True)
      + text(r"$ch_1^{\alpha, \beta}(v)=0$", [0.45, 1.5], rotation=90, fontsize="x-large", clip=True)
      + text(r"$ch_2^{\alpha, \beta}(v)=0$", [-2, 2], rotation=-45, fontsize="x-large", clip=True)
      + text(r"$\nu_{\alpha, \beta}(v)>0$", [-3, 1], rgbcolor="black", fontsize="x-large", clip=True)
      + text(r"$\nu_{\alpha, \beta}(v)<0$", [-1, 3], rgbcolor="black", fontsize="x-large", clip=True)
      + text(r"$\nu_{\alpha, \beta}(-v)>0$", [2, 3], rgbcolor="black", fontsize="x-large", clip=True)
      + text(r"$\nu_{\alpha, \beta}(-v)<0$", [4, 1], rgbcolor="black", fontsize="x-large", clip=True)
    )
    p.xmax(5)
    p.xmin(-4)
    p.ymax(4)
    p.axes_labels([r"$\beta$", r"$\alpha$"])
    return p

v1 = Chern_Char(3, 2, -2)
v2 = Chern_Char(3, 2, 2/3)
\end{sagesilent}

%\begin{figure}
%	\centering
%	\sageplot[width=\textwidth]{charact_curves(v1)}
%	\caption{}
%	\label{fig:charact_curves_vis}
%\end{figure}
\begin{figure}
\centering
\begin{subfigure}{.49\textwidth}
	\centering
	\sageplot[width=\textwidth]{charact_curves(v1)}
	\caption{$\Delta(v)>0$}
	\label{fig:charact_curves_vis_bgmvlPos}
\end{subfigure}%
\hfill
\begin{subfigure}{.49\textwidth}
	\centering
	\sageplot[width=\textwidth]{charact_curves(v2)}
	\caption{$\Delta(v)=0$}
	\label{fig:charact_curves_vis_bgmlv0}
\end{subfigure}
\caption{
	Characteristic curves ($\chern_i^{\alpha,\beta}(v)=0$) of stability conditions
	associated to Chern characters $v$ with $\Delta(v) \geq 0$ and positive rank.
}
\label{fig:charact_curves_vis}
\end{figure}

\begin{sagesilent}
v = Chern_Char(3, 2, -2)
u = Chern_Char(1, 0, 0)

def charact_curve_with_wall_plot(u,v):
    alpha = stability.Tilt().alpha
    beta = stability.Tilt().beta
    
    coords_range = (beta, -5, 5), (alpha, 0, 5)
    
    charact_curve_plot = (
      implicit_plot(stability.Tilt().degree(u), *coords_range , rgbcolor = "red")
      + implicit_plot(stability.Tilt().degree(v), *coords_range )
      + line([(mu(v),0),(mu(v),5)], linestyle = "dashed", legend_label =
      r"$(3,2\ell,-4\ell^2/2)$")
      + line([(mu(u),0),(mu(u),5)], rgbcolor = "red", linestyle =
      "dashed", legend_label = r"$(1,0,0)$")
      + implicit_plot(stability.Tilt().wall_eqn(u,v)/alpha,
      *coords_range , rgbcolor = "black")
    )
    charact_curve_plot.xmax(1)
    charact_curve_plot.xmin(-2)
    charact_curve_plot.ymax(1.5)
    charact_curve_plot.axes_labels([r"$\beta$", r"$\alpha$"])
Loading
Loading full blame...