Newer
Older
For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower
bound on $d$, but it is weaker than the one given by the lower bound in
subsubsection \ref{subsect-d-bound-radiuscond}.
Viewing the right hand side of equation \ref{eqn-bgmlv3_d_upperbound}
as a function of $r$, the linear and constant terms almost match up with the
ones in the previous section, up to the
$\chern_2^{\beta}(v)$ term.
However, when specializing to problem \ref{problem:problem-statement-2} again
(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$.
And so in this context, the linear and constant terms do match up with the
previous subsubsections.
\subsubsection{All Bounds on $d$ Together for Problem
\ref{problem:problem-statement-2}}
\label{subsubsect:all-bounds-on-d-prob2}
As mentioned in passing, when specializing to solutions $u$ of problem
\ref{problem:problem-statement-2}, the bounds on
$d=\chern^{\beta_{-}}_2(u)$ induced by conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob1}
from corollary \ref{cor:num_test_prob2} have the same constant and linear
terms in $r$, but different hyperbolic terms.
These give bounds with the same assymptotes when we take $r\to\infty$
(for any fixed $q=\chern_1^{\beta_{-}}(u)$).
% redefine \beta (especially coming from rendered SageMath expressions)
% to be \beta_{-} for the rest of this subsubsection
\bgroup
\let\originalbeta\beta
\renewcommand\beta{{\originalbeta_{-}}}
\bgroup
% redefine \psi in sage expressions (placeholder for ch_1^\beta(F)
\def\psi{\chern_1^{\beta}(F)}
d &>&
\frac{1}{2}\beta^2 r
&+ \beta q,
\phantom{+}& % to keep terms aligned
&\qquad\text{when\:} r > 0
\label{eqn:radiuscond_d_bound_betamin}
\sage{bgmlv2_d_upperbound_terms.problem2.linear}
&+ \sage{bgmlv2_d_upperbound_terms.problem2.const}
+& \sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic},
\label{eqn:bgmlv2_d_bound_betamin}
\sage{bgmlv3_d_upperbound_terms.problem2.linear}
&+ \sage{bgmlv3_d_upperbound_terms.problem2.const}
% ^ ch_2^\beta(F)=0 for beta_{-}
+& \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic},
\label{eqn:bgmlv3_d_bound_betamin}
\begin{sagesilent}
from plots_and_expressions import \
bounds_on_d_qmin, \
bounds_on_d_qmax
\begin{figure}
\centering
\centering
\sageplot[width=\linewidth]{bounds_on_d_qmin}
\caption{$q = 0$ (all bounds other than green coincide on line)}
\label{fig:d_bounds_xmpl_min_q}
\end{subfigure}%
\centering
\sageplot[width=\linewidth]{bounds_on_d_qmax}
\caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)}
\label{fig:d_bounds_xmpl_max_q}
\end{subfigure}
\caption{
Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq\chern_0(E)$ for fixed, extreme,
values of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(F) = (3,2,-2)$.
}
\label{fig:d_bounds_xmpl_extrm_q}
\end{figure}
Recalling that $q \coloneqq \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$,
it is worth noting that the extreme values of $q$ in this range lead to the
tightest bounds on $d$, as illustrated in figure
(\ref{fig:d_bounds_xmpl_extrm_q}).
In fact, in each case, one of the weak upper bounds coincides with one of the
weak lower bounds, (implying no possible destabilizers $E$ with
$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values).
This indeed happens in general since the right hand sides of
(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and
(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$.
In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of
(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and
(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match.
The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$
for the bounds on $d$ in terms of $r$ is illustrated in figure
(\ref{fig:d_bounds_xmpl_gnrc_q}).
The question of whether there are pseudo-destabilizers of arbitrarily large
rank, in the context of the graph, comes down to whether there are points
$(r,d) \in \ZZ \oplus \frac{1}{\lcm(m,2)} \ZZ$ (with large $r$)
% TODO have a proper definition for pseudo-destabilizers/walls
that fit above the yellow line (ensuring positive radius of wall) but below the
blue and green (ensuring $\Delta(u), \Delta(v-u) > 0$).
These lines have the same assymptote at $r \to \infty$
(eqns \ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these
solutions is entirely determined by whether $\beta$ is rational or irrational.
Some of the details around the associated numerics are explored next.
\begin{sagesilent}
from plots_and_expressions import typical_bounds_on_d
\end{sagesilent}
\begin{figure}
\centering
\sageplot[width=\linewidth]{typical_bounds_on_d}
\caption{
Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed
value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$.
Where $\chern(F) = (3,2,-2)$.
}
\label{fig:d_bounds_xmpl_gnrc_q}
\end{figure}
\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r} in Problem
\ref{problem:problem-statement-2}}
Now, the inequalities from the above subsubsection
\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for
each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave
no possible solutions for $d$. At that point, there are no solutions
$u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}.
The strategy here is similar to what was shown in theorem
\ref{thm:loose-bound-on-r}.
\renewcommand{\aa}{{a_v}}
\newcommand{\bb}{{b_q}}
Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$.
Then fix a value of $q$:
\begin{equation}
\in
\frac{1}{n} \ZZ
\cap [0, \chern_1^{\beta}(F)]
\end{equation}
as noted at the beginning of this section \ref{sec:refinement} so that we are
considering $u$ which satisfy \ref{item:chern1bound:lem:num_test_prob2}
in corollary \ref{cor:num_test_prob2}.
Substituting the current values of $q$ and $\beta$ into the condition for the
radius of the pseudo-wall being positive
(eqn \ref{eqn:radiuscond_d_bound_betamin}) we get:
\begin{sagesilent}
from plots_and_expressions import \
positive_radius_condition_with_q, \
q_value_expr, \
beta_value_expr
\end{sagesilent}
\begin{equation}
\label{eqn:positive_rad_condition_in_terms_of_q_beta}
\frac{1}{\lcm(m,2)}\ZZ
\sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()}
\in
\frac{1}{2n^2}\ZZ
\end{equation}
from plots_and_expressions import main_theorem1
\begin{theorem}[Bound on $r$ \#1]
\label{thm:rmax_with_uniform_eps}
Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the
pseudo-semistabilizers for $v$,
which are solutions to problem \ref{problem:problem-statement-2},
with $\chern_1^\beta = q$
are bounded above by the following expression.
\bgroup
\def\psi{\chern_1^{\beta}(F)}
\renewcommand\Omega{{\lcm(m,2n^2)}}
\sage{main_theorem1.r_upper_bound1}, \:\:
\sage{main_theorem1.r_upper_bound2}
Taking the maximum of this expression over
$q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$
would give an upper bound for the ranks of all solutions to problem
\ref{problem:problem-statement-2}.
Both $d$ and the lower bound in
(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
So, if any of the two upper bounds on $d$ come to within
$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for
Hence any corresponding $r$ cannot be a rank of a
pseudo-semistabilizer for $v$.
To avoid this, we must have,
considering equations
\ref{eqn:bgmlv2_d_bound_betamin},
\ref{eqn:bgmlv3_d_bound_betamin},
\ref{eqn:radiuscond_d_bound_betamin}.
\bgroup
\let\originalepsilon\epsilon
\renewcommand\epsilon{{\originalepsilon_{v}}}
from plots_and_expressions import \
assymptote_gap_condition1, assymptote_gap_condition2, kappa
\bgroup
\def\psi{\chern_1^{\beta}(F)}
\renewcommand\Omega{{\lcm(m,2n^2)}}
&\sage{assymptote_gap_condition1.subs(kappa==1)} \\
&\sage{assymptote_gap_condition2.subs(kappa==1)}
\noindent
This is equivalent to:
\renewcommand\Omega{{\lcm(m,2n^2)}}
\def\psi{\chern_1^{\beta}(F)}
\label{eqn:thm-bound-for-r-impossible-cond-for-r}
r \leq
main_theorem1.r_upper_bound1
main_theorem1.r_upper_bound2
\egroup % end scope where epsilon redefined
from plots_and_expressions import q_sol, Delta, psi
\label{cor:direct_rmax_with_uniform_eps}
Luke Naylor
committed
Let $v$ be a fixed Chern character and
$R\coloneqq\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$.
Then the ranks of the pseudo-semistabilizers for $v$,
which are solutions to problem \ref{problem:problem-statement-2},
Luke Naylor
committed
are bounded above by the following expression.
\bgroup
\let\originalDelta\Delta
\renewcommand\Delta{{\originalDelta(v)}}
\renewcommand\Omega{{\lcm(m,2n^2)}}
\sage{main_theorem1.corollary_r_bound}
Luke Naylor
committed
\egroup
Luke Naylor
committed
\renewcommand\Omega{{\lcm(m,2n^2)}}
\def\psi{\chern_1^{\beta}(F)}
\let\originalDelta\Delta
The ranks of the pseudo-semistabilizers for $v$ are bounded above by the
maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem
\ref{thm:rmax_with_uniform_eps}.
Noticing that the expression is a maximum of two quadratic functions in $q$:
\begin{equation*}
f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad
f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2}
\end{equation*}
These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively.
It suffices to find their intersection in
$q\in [0, \chern_1^{\beta}(F)]$, if it exists,
and evaluating on of the $f_i$ there.
The intersection exists, provided that
$f_1(\chern_1^{\beta}(F)) \geq f_2(\chern_1^{\beta}(F))=R$,
$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$.
Solving for $f_1(q)=f_2(q)$ yields
\begin{equation*}
q=\sage{q_sol.expand()}
\end{equation*}
\begin{equation*}
\sage{main_theorem1.corollary_intermediate}
\end{equation*}
Finally, noting that $\originalDelta(v)=\psi^2\ell^2$, we get the bound as
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-second}
Just like in example \ref{exmpl:recurring-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{recurring.betaminus}$,
giving $n=\sage{recurring.n}$.
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilizers for $v$ are bounded above by
$\sage{recurring.corrolary_bound} \approx \sage{float(recurring.corrolary_bound)}$,
which is much closer to real maximum 25 than the original bound 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-second}
Just like in example \ref{exmpl:extravagant-first}, take
$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so
that $m=2$, $\beta=\sage{extravagant.betaminus}$,
giving $n=\sage{extravagant.n}$.
Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
the ranks of tilt semistabilizers for $v$ are bounded above by
$\sage{extravagant.corrolary_bound} \approx \sage{float(extravagant.corrolary_bound)}$,
which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
original bound 215296.
%% refinements using specific values of q and beta
These bound can be refined a bit more by considering restrictions from the
possible values that $r$ take.
Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact
that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of
$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a
conservative estimate, and a larger gap can sometimes be guaranteed if we know
this value of $\frac{1}{2n^2}\ZZ$ explicitly.
The expressions that will follow will be a bit more complicated and have more
parts which depend on the values of $q$ and $\beta$, even their numerators
$\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a
`clean' formula for a bound on the ranks of the pseudo-semistabilizers, but has a
purpose in the context of writing a computer program to find
pseudo-semistabilizers. Such a program would iterate through possible values of
$q$, then iterate through values of $r$ within the bounds (dependent on $q$),
which would then determine $c$, and then find the corresponding possible values
for $d$.
Firstly, we only need to consider $r$-values for which $c\coloneqq\chern_1(E)$ is
\begin{equation}
c =
\sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])}
\in \ZZ
\end{equation}
\noindent
That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to
$n$, and so invertible mod $n$).
Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$.
Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the
proof of theorem \ref{thm:rmax_with_uniform_eps}:
\begin{lemmadfn}[
Finding a better alternative to $\epsilon_v$:
$\epsilon_{v,q}$
]
\label{lemdfn:epsilon_q}
Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in
eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}.
That is:
\begin{equation*}
\sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()}
\end{equation*}
\noindent
Then we have:
\begin{equation}
\label{eqn:epsilon_q_lemma_prop}
d - \frac{(\aa r + 2\bb)\aa}{2n^2}
\geq \epsilon_{v,q} \geq \epsilon_v > 0
\end{equation}
\noindent
Where $\epsilon_{v,q}$ is defined as follows:
\begin{equation*}
\frac{k_{q}}{\lcm(m,2n^2)}
\end{equation*}
with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb \frac{m}{\gcd(m,2n^2)}
\mod{\gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn\aa}{\gcd(m,2n^2)}
\right)}
\end{equation*}
\end{lemmadfn}
\begin{proof}
Consider the following sequence of logical implications.
The one-way implication follows from
$\aa r + \bb \equiv 0 \pmod{n}$,
and the final logical equivalence is just a simplification of the expressions.
\frac{ x }{ \lcm(m,2) }
- \frac{
(\aa r+2\bb)\aa
}{
2n^2
}
= \frac{ k }{ \lcm(m,2n^2) }
\quad \text{for some } x \in \ZZ
\span \span \span \span \span
\label{eqn:finding_better_eps_problem}
\frac{\lcm(m,2n^2)}{2n^2}
\mod \frac{\lcm(m,2n^2)}{\lcm(m,2)}
- \bb\aa
\frac{\lcm(m,2n^2)}{2n^2}
\nonumber
\\ &&&
\mod \gcd\left(
\frac{\lcm(m,2n^2)}{\lcm(m,2)},
\right)
\span \span \span
\nonumber
- \bb\aa
\frac{m}{\gcd(m,2n^2)}
\label{eqn:better_eps_problem_k_mod_n}
\\ &&&
\mod \gcd\left(
\frac{n^2\gcd(m,2)}{\gcd(m,2n^2)},
\frac{mn \aa}{\gcd(m,2n^2)}
\right)
\span \span \span
\nonumber
In our situation, we want to find the least $k>0$ satisfying
Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n},
we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition
(a computation only depending on $q$ and $\beta$, but not $r$).
We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying eqn
\ref{eqn:finding_better_eps_problem}, giving the first inequality in eqn
\ref{eqn:epsilon_q_lemma_prop}.
Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality:
$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$.
\begin{sagesilent}
from plots_and_expressions import main_theorem2
\begin{theorem}[Bound on $r$ \#3]
\label{thm:rmax_with_eps1}
Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with,
which are solutions to problem \ref{problem:problem-statement-2},
$\chern_1^\beta(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\def\kappa{k_{v,q}}
\renewcommand\Omega{{\lcm(m,2n^2)}}
\sage{main_theorem2.r_upper_bound1}, \:\:
\sage{main_theorem2.r_upper_bound2}
\right)
\end{align*}
\egroup
Where $k_{v,q}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q},
and $R = \chern_0(v)$
Furthermore, if $\aa \not= 0$ then
$r \equiv \aa^{-1}b_q \pmod{n}$.
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
Although the general form of this bound is quite complicated, it does simplify a
lot when $m$ is small.
\begin{sagesilent}
from plots_and_expressions import main_theorem2_corollary
\end{sagesilent}
\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarized abelian surfaces]
\label{thm:rmax_with_eps1}
Suppose we are working over $\PP^2$ or a principally polarized abelian surface
(or any other surfaces with $m=1$ or $2$).
Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$
rational and expressed in lowest terms.
Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with,
which are solutions to problem \ref{problem:problem-statement-2},
$\chern_1^\beta(u) = q = \frac{b_q}{n}$
are bounded above by the following expression:
\bgroup
\def\kappa{k_{v,q}}
\def\psi{\chern_1^{\beta}(F)}
\begin{align*}
\min
\left(
\sage{main_theorem2_corollary.r_upper_bound1}, \:\:
\sage{main_theorem2_corollary.r_upper_bound2}
\right)
\end{align*}
\egroup
Where $R = \chern_0(v)$ and $k_{v,q}$ is the least
$k\in\ZZ_{>0}$ satisfying
\begin{equation*}
k \equiv -\aa\bb
\pmod{n}
\end{equation*}
\noindent
Furthermore, if $\aa \not= 0$ then
$r \equiv \aa^{-1}b_q \pmod{n}$.
\end{corollary}
\begin{proof}
This is a specialisation of theorem \ref{thm:rmax_with_eps1}, where we can
drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both
$2$ and $2n^2$, and that $a_v$ is coprime to $n$.
\end{proof}
\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$]
\label{exmpl:recurring-third}
Just like in examples \ref{exmpl:recurring-first} and
\ref{exmpl:recurring-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$
and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$
in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
from examples import bound_comparisons
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring)
\directlua{ table_width = 3*4+1 }
\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
\end{tabular}
It's worth noting that the bounds given by theorem \ref{thm:rmax_with_eps1}
reach, but do not exceed the actual maximum rank 25 of the
pseudo-semistabilizers of $v$ in this case.
As a reminder, the original loose bound from theorem \ref{thm:loose-bound-on-r}
was 144.
\end{example}
\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$]
\label{exmpl:extravagant-third}
Just like in examples \ref{exmpl:extravagant-first} and
\ref{exmpl:extravagant-second},
take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$
and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$.
This example was chosen because the $n$ value is moderatly large, giving more
possible values for $k_{v,q}$, in dfn/lemma \ref{lemdfn:epsilon_q}. This allows
for a larger possible difference between the bounds given by theorems
\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound
from the second being up to $\sage{n}$ times smaller, for any given $q$ value.
The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$
in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows:
\begin{sagesilent}
qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant)
\end{sagesilent}
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
\noindent
\directlua{ table_width = 12 }
\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}}
$q=\chern_1^\beta(u)$
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\ \hline
Thm \ref{thm:rmax_with_uniform_eps}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\\
Thm \ref{thm:rmax_with_eps1}
\directlua{for i=0,table_width-1 do
local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$"
tex.sprint(cell)
end}
&$\cdots$
\end{tabular}
\noindent
However the reduction in the overall bound on $r$ is not as drastic, since all
possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through
cyclically as we consider successive possible values for $q$.
And for each $q$ where $k_{v,q}=1$, both theorems give the same bound.
Calculating the maximums over all values of $q$ yields
$\sage{max(theorem2_bounds)}$ for theorem \ref{thm:rmax_with_uniform_eps}, and
$\sage{max(theorem3_bounds)}$ for theorem \ref{thm:rmax_with_eps1}.
\end{example}
\egroup % end scope where beta redefined to beta_{-}
\subsubsection{All Semistabilizers Giving Sufficiently Large Circular Walls Left
of Vertical Wall}
Goals:
\begin{itemize}
\item refresher on strategy
\item point out no need for rational beta
\item calculate intersection of bounds?
\end{itemize}
\subsection{Irrational $\beta_{-}$}
Goals:
\begin{itemize}
\item Point out if only looking for sufficiently large wall, look at above
subsubsection
\item Relate to Pell's equation through coordinate change?
\item Relate to numerical condition described by Yanagida/Yoshioka
\end{itemize}
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
\section{Computing solutions to Problem \ref{problem:problem-statement-2}}
\label{sect:prob2-algorithm}
Alongside this article, there is a library \cite{NaylorRust2023} to compute
the solutions to problem \ref{problem:problem-statement-2}, using the theorems
above.
The way it works, is by yielding solutions to the problem
$u=(r,c\ell,\frac{e}{2}\ell^2)$ as follows.
\subsection{Iterating Over Possible $q=\chern^{\beta_{-}}(u)$}
Given a Chern character $v$, the domain of the problem are first verified: that
$v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that
$\beta_{-}(v)$ is rational.
Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms.
Iterate over $q \in [0,\chern_1^{\beta_{-}}(v)]\cap\frac{1}{n}\ZZ$.
For any $u = (r,c\ell,\frac{e}{2}\ell^2)$, satisfying
$\chern_1^{\beta_{-}}(u)=q$ for one of the $q$ considered is equivalent to
satisfying condition \ref{item:chern1bound:lem:num_test_prob2}
in corollary \ref{cor:num_test_prob2}.
\subsection{Iterating Over Possible $r=\chern_0(u)$ for Fixed $q=\chern^{\beta_{-}}(u)$}
Let $q=\frac{b_q}{n}$ be one of the values of $\chern_1^{\beta_{-}}(u)$ that we
have fixed. As mentioned before, the only values of $r$ which can
give $\chern_1^{\beta_{-}}(u)=q$ are precisely the ones which satisfy
$a_v r \equiv b_q \pmod{n}$.
This is true for all integers when $\beta_{-}=0$ (and so $n=1$), but otherwise,
this is equivalent to
$r \equiv {a_v}^{-1}b_q \pmod{n}$, since $a_v$ and $n$ are coprime.
Note that expressing $\mu(u)$ in term of $q$ and $r$ gives:
\begin{align*}
\mu(u) & = \frac{c}{r} = \frac{q+r\beta_{-}}{r}
\\
&= \beta_{-} + \frac{q}{r}
\end{align*}
So condition \ref{item:mubound:lem:num_test_prob2} in corollary
\ref{cor:num_test_prob2} is satisfied at this point precisely when:
\begin{equation*}
r > \frac{q}{\mu(u) - \beta_{-}}
\end{equation*}
Note that the right hand-side is greater than, or equal, to 0, so such $r$ also
satisfies \ref{item:rankpos:lem:num_test_prob2}.
Then theorem \ref{thm:rmax_with_eps1} gives an upper on possible $r$ values
for which it is possible to satisfy conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob2}.
Iterate over such $r$ so that we are guarenteed to satisfy conditions
\ref{item:mubound:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob2}
in corollary
\ref{cor:num_test_prob2}, and have a chance at satisfying the rest.
\subsection{Iterating Over Possible $d=\chern_2(u)$ for Fixed $r=\chern_0(u)$
and $q=\chern^{\beta_{-}}(u)$}
At this point we have fixed $\chern_0(u)=r$ and
$\chern_1(u)=c=q+r\beta_{-}$.
And the cases considered are precisely the ones which satisfy conditions
\ref{item:chern1bound:lem:num_test_prob2},
\ref{item:mubound:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob2}
in corollary \ref{cor:num_test_prob2}.
It remains to find $\chern_2(u)=d=\frac{e}{2}$
which satisfy the remaining conditions
\ref{item:bgmlvu:lem:num_test_prob2},
\ref{item:bgmlvv-u:lem:num_test_prob2}, and
\ref{item:radiuscond:lem:num_test_prob2}.
These conditions induce upper and lower bounds on $d$, and it then remains to
just pick the integers $e$ that give $d$ values within the bounds.
Thus, through this process yielding all solutions $u=(r,c\ell,\frac{e}{2}\ell^2)$
to the problem for this choice of $v$.
\newpage
\printbibliography
\section{Appendix - SageMath code}
\usemintedstyle{tango}
\inputminted[
obeytabs=true,
tabsize=2,
breaklines=true,
breakbefore=./
]{python}{filtered_sage.txt}